【題目】同學(xué)們都知道,表示4與-2的差的絕對值,實(shí)際上也可理解為4與-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離,同理也可理解為與3兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離,就表示在數(shù)軸上對應(yīng)的點(diǎn)到-1的距離,由上面絕對值的幾何意義,解答下列問題:
(1)求 .
(2)若,則 .
(3)請你找出所有符合條件的整數(shù),使得.
(4)求的最小值,并寫出此時的取值情況.
(5)已知,求的最大值和最小值.
【答案】(1)6;(2)7或-3;(3)-2,-1,0,1;(4)時,最小值為9;(5)最大值為5,最小值為-8
【解析】
(1)可先算出4與-2的差,然后再求出差的絕對值即可;
(2)可以理解成到橫坐標(biāo)為2且距離為5的點(diǎn),即可求解;
(3)兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離,即可解答.
(4)先找到中間點(diǎn),再根據(jù)絕對值的性質(zhì)即可求出最小值及x的取值情況;,
(5)由=3+7,可知-2≤x≤1,-4≤y≤3,依此到2x+y最大值和最小值.
解:(1)6
(2)可以理解成到橫坐標(biāo)為2且距離為5的點(diǎn),
則這個數(shù)為:2-5=-3或2+5=7;
(3)由題意可知:表示數(shù)x到1和-2的距離之和,
∴-2≤x≤1,即:x=-2、-1、0、1;
(4)的最小值為(-2+6)+0+(3+2)=9,此時x的取值情況是x=-2;
(5)∵=3+7,,
∴-2≤x≤1,-4≤y≤3
∴2x+y的最大值為2×1+3=5,最小值為2×(-2)+(-4)=-8.
故2x+y的最大值為5,最小值為-8
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是,連接交于點(diǎn)O,并分別與邊交于點(diǎn),連接AE,下列結(jié)論: ; ; ; 當(dāng)時, ,其中正確結(jié)論的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于點(diǎn),與y軸交于點(diǎn)B,拋物線經(jīng)過點(diǎn).
求k的值和拋物線的解析式;
為x軸上一動點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn).
若以O,B,N,P為頂點(diǎn)的四邊形OBNP是平行四邊形時,求m的值.
當(dāng) 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小丁設(shè)計(jì)的“利用直角三角形和它的斜邊中點(diǎn)作矩形”的尺規(guī)作圖過程.
已知:如圖,在RtΔABC中,∠ABC=90°,0為AC的中點(diǎn).
求作:四邊形ABCD,使得四邊形ABCD為矩形.
作法:①作射線BO,在線段BO的延長線上取點(diǎn)D,使得DO=BO;
②連接AD,CD,則四邊形ABCD為矩形.
根據(jù)小丁設(shè)計(jì)的尺規(guī)作圖過程.
(1)使用直尺和圓規(guī),在圖中補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:∴點(diǎn)O為AC的中點(diǎn),
∴AO=CO.
又∵DO=BO,
∵四邊形ABCD為平行四邊形(__________)(填推理的依據(jù)).
∵∠ABC=90°,
∴ABCD為矩形(_________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為節(jié)約用水,某區(qū)規(guī)定三口之家每月標(biāo)準(zhǔn)用水量為15立方米,不超過標(biāo)準(zhǔn)的水費(fèi)價格為每立方米1.5元,超過標(biāo)準(zhǔn)的超過部分的價格為每立方米3元,小明家11月份用水x立方米;小紅家11月份用水y(y>15)立方米
(1)用含y的代數(shù)式表示小紅家11月份應(yīng)繳的水費(fèi);
(2)用含有x的代數(shù)式表示小明家11月份應(yīng)繳的水費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果等腰三角形一腰上的高與另一腰的夾角45°,那么這個等腰三角形的底角為( )
A. 67°50′B. 22°C. 67.5°D. 22.5°或67.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù),當(dāng)時,函數(shù)有最大值5.
(1)求此二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn);
(2)將函數(shù)圖象x軸下方部分沿x軸向上翻折,得到的新圖象與直線恒有四個交點(diǎn),從左到右,四個交點(diǎn)依次記為,當(dāng)以為直徑的圓與軸相切時,求的值.
(3)若點(diǎn)是(2)中翻折得到的拋物線弧部分上任意一點(diǎn),若關(guān)于m的一元二次方程 恒有實(shí)數(shù)根時,求實(shí)數(shù)k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求△ACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)公司推出了一系列上網(wǎng)包月業(yè)務(wù),其中的一項(xiàng)業(yè)務(wù)是10M“40元包200小時”,且其中每月收取費(fèi)用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示.
(1)當(dāng)x≥200時,求y與x之間的函數(shù)關(guān)系式
(2)若小剛家10月份上網(wǎng)180小時,則他家應(yīng)付多少元上網(wǎng)費(fèi)?
(3)若小明家10月份上網(wǎng)費(fèi)用為52元,則他家該月的上網(wǎng)時間是多少小時?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com