【題目】“端午節(jié)”又稱為端陽節(jié)、重午節(jié)、龍舟節(jié)、正陽節(jié)、洛蘭節(jié)等,是中國四大傳統(tǒng)節(jié)日之一,端午習(xí)俗眾多,其中吃粽子是端午節(jié)的習(xí)俗主題之一,某超市5月以50元/盒的進(jìn)價購進(jìn)一款粽子1000盒,以100元/盒的售價全部銷售完.銷售人員根據(jù)市場調(diào)研預(yù)測,該款粽子每盒的售價在5月售價基礎(chǔ)上每降價5元,月銷量就會相應(yīng)增加100盒,該超市6月計劃購進(jìn)該款粽子不超過1400盒.
(1)根據(jù)該超市6月計劃,該款粽子6月的售價最少每盒可以定價多少元?
(2)實(shí)際上,6月該超市購進(jìn)該款粽子的進(jìn)價比5月便宜了元,而實(shí)際售價在5月基礎(chǔ)上降了m元,已知6月的銷售利潤比5月增加8%,求m的值.
【答案】(1)最少每盒定價80元;(2)m=10
【解析】
(1)設(shè)該款粽子6月的售價最少每盒可以定價x元,根據(jù)該超市6月計劃購進(jìn)該款粽子不超過1400盒.列不等式可求解;
(2)根據(jù)6月份每盒的利潤乘以盒數(shù)等于5月份利潤的(1+8%)倍,列方程可求解.
(1)設(shè)該款粽子6月的售價最少每盒可以定價x元,由題意得
1000+×100≤1400
解得x≥80
答:該款粽子6月的售價最少每盒可以定價80元.
(2)由題意得
化簡得m250m+400=0
∴m=10或m=40
當(dāng)m=10時,售價為10010=90元,符合題意,
當(dāng)m=40時,售價為10040=60<80,不符合題意,
答:m的值為10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線G:y=mx2+2mx+m﹣1(m≠0)與y軸交于點(diǎn)C,拋物線G的頂點(diǎn)為D,直線:y=mx+m﹣1(m≠0).
(1)當(dāng)m=1時,畫出直線和拋物線G,并直接寫出直線被拋物線G截得的線段長.
(2)隨著m取值的變化,判斷點(diǎn)C,D是否都在直線上并說明理由.
(3)若直線被拋物線G截得的線段長不小于2,結(jié)合函數(shù)的圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種文具,進(jìn)價為5元/件.售價為6元/件時,當(dāng)天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當(dāng)天的銷售量就減少5件.設(shè)當(dāng)天銷售單價統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價所在的范圍;
(3)若每件文具的利潤不超過,要想當(dāng)天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對應(yīng)點(diǎn)是G,過點(diǎn)B作BE⊥CG,垂足為E,且在AD上,BE交PC于點(diǎn)F,那么下列選項正確的是( )
①BP=BF;②如圖1,若點(diǎn)E是AD的中點(diǎn),那么△AEB≌△DEC;③當(dāng)AD=25,且AE<DE時,則DE=16;④在③的條件下,可得sin∠PCB=;⑤當(dāng)BP=9時,BEEF=108.
A.①②③④B.①②④⑤C.①②③⑤D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
小剛同學(xué)的思路是:將△BPC繞點(diǎn)B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠APB=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長為,問題得到解決.
請你參考小剛同學(xué)的思路,探究并解決下列問題:
如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=2,PC=.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動點(diǎn)D從點(diǎn)A出發(fā)以每秒3個單位的速度運(yùn)動至點(diǎn)B,過點(diǎn)D作DE⊥AB交射線AC于點(diǎn)E.設(shè)點(diǎn)D的運(yùn)動時間為t秒(t>0).
(1)線段AE的長為 .(用含t的代數(shù)式表示)
(2)若△ADE與△ACB的面積比為1:4時,求t的值.
(3)設(shè)△ADE與△ACB重疊部分圖形的周長為L,求L與t之間的函數(shù)關(guān)系式.
(4)當(dāng)直線DE把△ACB分成的兩部分圖形中有一個是軸對稱圖形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年月日,西藏日喀則市謝通門縣發(fā)生了級地震,某校九年班、九年二班兩班的班長交流了為地震災(zāi)區(qū)捐款的情況:
(1)九年一班班長說:“我們班捐款總額為元,我們班人數(shù)比你們班多人”.
(2)九年二班班長說:“我們班捐款總額也為元,我們班人均捐款比你們班人均捐款多”.
請根據(jù)兩個班長的對話,求這兩個班級每班的人均捐款數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com