【題目】已知⊙O的弦AB長為2,C是⊙O上一點,若,則的面積的最大值為________.

【答案】+1

【解析】

首先過CCMABM,由弦AB已確定,可得要使△ABC的面積最大,只要CM取最大值即可,即可得當CM過圓心O時,CM最大,然后由圓周角定理,證得△AOB是等腰直角三角形,則可求得CM的長,繼而求得答案.

CCMABM,


∵弦AB已確定,
∴要使△ABC的面積最大,只要CM取最大值即可,
如圖所示,當CM過圓心O時,CM最大,
CMAB,CMO
AM=BM(垂徑定理),
AC=BC
∵∠AOB=2ACB=2×45°=90°,
OM=AM=AB=×2=1,
OA= =
CM=OC+OM=+1,
SABC=ABCM=×2×+1=+1
故答案為+1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,線段AB的兩個端點坐標分別為(﹣1,2),(2,3),把線段AB繞著原點O順時針旋轉90°得到線段A'B',點A的對應點為A'

1)畫出線段A'B',并寫出點A'B'的坐標;

2)根據(jù)(1)中的變化規(guī)律,把OM繞著原點O順時針旋轉90°得到ON,則點Mm,n)的對應點N的坐標是(      ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點NCD邊的延長線上,且滿足∠MAN=90°,聯(lián)結MN、AC,N與邊AD交于點E.

(1)求證:AM=AN;

(2)如果∠CAD=2NAD,求證:AM2=ACAE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B135°,端點為A的射線lCB,點A繞射線l上的某點D旋轉一周所形成的圖形為F,點B在圖形F上.

1)利用尺規(guī)作圖確定點D的位置;

2)判斷直線BC與圖形F的公共點個數(shù),并說明理由;

3)若AD2,∠C15°,求直線AC被圖形F所截得的線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:

ABC先向右平移4個單位長度、再向上平移2個單位長度,得到A1B1C1,畫出A1B1C1;

②△A2B2C2ABC關于原點O成中心對稱,畫出A2B2C2

(2)在(1)中所得的A1B1C1A2B2C2關于點M成中心對稱,請直接寫出對稱中心M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b的圖象過點A(0,3),且與反比例函數(shù)y=的圖象相交于B、C兩點.若AB=BC,則k1k2的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電臺“市民熱線”對上周內接到的熱線電話進行了分類統(tǒng)計,得到的統(tǒng)計信息圖如圖所示,其中有關房產城建的電話有30個,請你根據(jù)統(tǒng)計圖的信息回答以下問題:

1)道路交通熱線電話是多少個占總數(shù)百分比是多少?

2)上周“市民熱線”接到有關環(huán)境保護方面的電話有多少個?

3)據(jù)此估計,除環(huán)境保護方面的電話外,“市民熱線”今年(按52周計算)將接到的熱線電話約多少個?

4)為了更直觀顯示各類“市民熱線”電話的數(shù)目,你準備采用什么樣的統(tǒng)計方法?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)又稱為端陽節(jié)、重午節(jié)、龍舟節(jié)、正陽節(jié)、洛蘭節(jié)等,是中國四大傳統(tǒng)節(jié)日之一,端午習俗眾多,其中吃粽子是端午節(jié)的習俗主題之一,某超市5月以50/盒的進價購進一款粽子1000盒,以100/盒的售價全部銷售完.銷售人員根據(jù)市場調研預測,該款粽子每盒的售價在5月售價基礎上每降價5元,月銷量就會相應增加100盒,該超市6月計劃購進該款粽子不超過1400.

1)根據(jù)該超市6月計劃,該款粽子6月的售價最少每盒可以定價多少元?

2)實際上,6月該超市購進該款粽子的進價比5月便宜了元,而實際售價在5月基礎上降了m元,已知6月的銷售利潤比5月增加8%,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+ca≠0)與x軸交于A,B兩點,與y軸交于點C,點BC的坐標分別為(4,0)和(04),拋物線的對稱軸為x1,直線AD交拋物線于點D2,m).

1)求拋物線和直線AD的解析式;

2)如圖,點Q是線段AB上一動點,過點QQEAD,交BD于點E,連接DQ,求QED面積的最大值;

3)如圖,直線ADy軸于點F,點MN分別是拋物線對稱軸和拋物線上的點,若以CF,MN為頂點的四邊形是平行四邊形,求點M的坐標.

查看答案和解析>>

同步練習冊答案