【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.
(1)若1表示的點與﹣1表示的點重合,則﹣2.5表示的點與數(shù) 表示的點重合;
(2)若﹣1表示的點與5表示的點重合,回答以下問題:
①5表示的點與數(shù) 表示的點重合;
②若數(shù)軸上A、B兩點之間的距離為9(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少?
【答案】(1)2.5;(2)①﹣1;②A、B兩點表示的數(shù)分別為﹣2.5和6.5
【解析】
(1)根據(jù)原點O是對稱中心,對稱的兩點互為相反數(shù),即可解決問題.
(2)①5表示的點與數(shù)﹣1表示的點重合.
②求出對稱中心表示的數(shù),再根據(jù)AB=9,即可解決問題.
解:(1)若1表示的點與﹣1表示的點重合,則﹣2.5表示的點與數(shù)2.5表示的點重合.
故答案為2.5.
(2)①5表示的點與數(shù)﹣1表示的點重合,
故答案為﹣1.
②由題意對稱中心表示的數(shù)為2,
∵AB=9,
∴A、B兩點表示的數(shù)分別為﹣2.5和6.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,解答后面給出的問題:
兩個含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說這兩個代數(shù)式互為有理化因式,例如與,+1與-1.
(1)請你再寫出兩個含有二次根式的代數(shù)式,使它們互為有理化因式:__________________;
這樣,化簡一個分母含有二次根式的式子時,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,.
(2)請仿照上面給出的方法化簡:;
(3)計算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(9,6),AB⊥y軸,垂足為B,點P從原點O出發(fā)向x軸正方向運動,同時,點Q從點A出發(fā)向點B運動,當(dāng)點Q到達(dá)點B時,點P、Q同時停止運動,若點P與點Q的速度之比為1:2,則下列說法正確的是( )
A. 線段PQ始終經(jīng)過點(2,3)
B. 線段PQ始終經(jīng)過點(3,2)
C. 線段PQ始終經(jīng)過點(2,2)
D. 線段PQ不可能始終經(jīng)過某一定點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探索發(fā)現(xiàn))有絕對值的定義可得,數(shù)軸上表示數(shù)的點到原點的距離為.小麗進(jìn)一步探究發(fā)現(xiàn),在數(shù)軸上,表示3和5的兩點之間的距離為;表示和5的兩點之間的距離為;表示和的兩點之間的距離為.
(概括總結(jié))根據(jù)以上過程可以得出:數(shù)軸上,表示數(shù)和數(shù)的兩點之間的距離為.
(問題解決)
(1)若,則________;
(2)若,則________;
(3)若,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長方形地面.請觀察各圖形并解答有關(guān)問題:
(1)在第個圖形中,每一橫行共有 塊瓷磚,每一豎列共有 塊瓷磚(均用含的代數(shù)式表示);
(2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為,用(1)中的表示;
(3)當(dāng)=20時,求的值;
(4)若黑瓷磚每塊4元,白瓷磚每塊3元,在問題(3)中,共需花多少元購買瓷磚?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分別為AC,BC邊上的點(不包括端點),且==m,連結(jié)AE,過點D作DM⊥AE,垂足為點M,延長DM交AB于點F.
(1)如圖1,過點E作EH⊥AB于點H,連結(jié)DH.
①求證:四邊形DHEC是平行四邊形;
②若m=,求證:AE=DF;
(2)如圖2,若m=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,擴大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
①8+(﹣10)+(﹣2)﹣(﹣5)
②2﹣3﹣5﹣|﹣3|
③(﹣1)+1.25+(﹣8.5)+10
④()×(﹣12)
⑤(﹣199)×5(用簡便方法計算)
⑥10×(﹣)﹣2×+(﹣3)×(﹣)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com