【題目】已知:點C為∠AOB內(nèi)一點.
(1)在OA上求作點D,在OB上求作點E,使△CDE的周長最小,請畫出圖形;(不寫做法,保留作圖痕跡)
(2)在(1)的條件下,若∠AOB=30°,OC=10,求△CDE周長的最小值.
【答案】(1)見解析;(2)△CDE周長的最小值為10.
【解析】
(1)分別作C點關(guān)于OA、OB的對稱點M、N,然后連接MN分別交OA、OB于D、E,利用兩點之間線段最短可判斷此時△CDE的周長最;
(2)利用對稱的性質(zhì)得到OM=OC=10,∠MOA=∠COA,ON=OC=10,∠NOB=∠COB,則△DCE的周長為MN,再證明△OMN為等邊三角形,從而得到MN=OM=10,所以△CDE周長的最小值為10.
(1)如圖,△CDE為所作;
(2)∵點M與點C關(guān)于OA對稱,
∴OM=OC=10,∠MOA=∠COA,DM=DC.
∵點N與點C關(guān)于OB對稱,
∴ON=OC=10,∠NOB=∠COB,EC=EN,
∴△DCE的周長為CD+CE+DE=DM+DE+EN=MN,
∴此時△DCE的周長最小.
∵∠MOA+∠NOB=∠COA+∠COB=∠AOB=30°,
∴∠MON=30°+30°=60°,
∴△OMN為等邊三角形,
∴MN=OM=10,
∴△CDE周長的最小值為10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,轉(zhuǎn)盤中8個扇形的面積都相等,任意轉(zhuǎn)動轉(zhuǎn)盤1次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,估計下列事件發(fā)生的可能性的大小,并將這些事件的序號按發(fā)生的可能性從小到大的順序排成一列是__________.(填序號)
(1)指針落在標有3的區(qū)域內(nèi);(2)指針落在標有9的區(qū)域內(nèi);
(3)指針落在標有數(shù)字的區(qū)域內(nèi);(4)指針落在標有奇數(shù)的區(qū)域內(nèi).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①、圖②,方格紙中的每個小正方形的邊長均為1,小正方形的頂點稱為格點,圖①和圖②中的點A、點B都是格點.分別在圖①、圖②中畫出格點C,并滿足下面的條件:
(1)在圖①中,使∠ABC=90°.此時AC的長度是 .
(2)在圖②中,使AB=AC.此時△ABC的邊AB上的高是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近期豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注.當市場豬肉的平均價格每千克達到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
從今年年初至月日,豬肉價格不斷走高,月日比年初價格上漲了.某市民在今年月日購買千克豬肉至少要花元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)月日,豬肉價格為每千克元月日,某市決定投入儲備豬肉并規(guī)定其銷售價在每千克元的基礎(chǔ)上下調(diào)出售.某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為每千克元的情況下,該天的兩種豬肉總銷量比月日增加了,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比月日提高了,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明騎自行車從甲地到乙地,圖中的折線表示小明行駛的路程與所用時間之間的函數(shù)關(guān)系.試根據(jù)函數(shù)圖像解答下列問題:
(1)小明在途中停留了____,小明在停留之前的速度為____;
(2)求線段的函數(shù)表達式;
(3)小明出發(fā)1小時后,小華也從甲地沿相同路徑勻速向乙地騎行,時,兩人同時到達乙地,求為何值時,兩人在途中相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:
①公交車的速度為400米/分鐘;
②小剛從家出發(fā)5分鐘時乘上公交車;
③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;
④小剛上課遲到了1分鐘.
其中正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3),過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.
(1)求反比例函數(shù)y=和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;
(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA于點M,求∠BMC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com