【題目】在平行四邊形ABCD中,AB=10,∠ABC=60°,以AB為直徑作⊙O,邊CD切⊙O于點E.
(1)圓心O到CD的距離是______;
(2)求由弧AE、線段AD、DE所圍成的陰影部分的面積.(結(jié)果保留π和根號)
【答案】5;25+- .
【解析】試題分析:(1)、連接OE,根據(jù)切線可得OE⊥CD,根據(jù)AB求出OE的長度,即圓心到CD的距離;(2)、根據(jù)平行四邊形得出∠C=120°,∠BOE=90°,作EF∥CB,根據(jù)Rt△OEF求出OF的長度,然后得出EC和DE長度,從而求出梯形OADE的面積和扇形OAE的面積,從而得出陰影部分的面積.
試題解析:(1)、連接OE.
∵邊CD切⊙O于點E.∴OE⊥CD 則OE就是圓心O到CD的距離,則圓心O到CD的距離是×AB=5.
(2)∵四邊形ABCD是平行四邊形. ∴∠C=∠DAB=180°-∠ABC=120°,
∴∠BOE=360°-90°-60°-120°=90°, ∴∠AOE=90°,
作EF∥CB,∴∠OFE=∠ABC=60°, 在直角三角形OEF中,OE=5,
∴OF=OEtan30°=.EC=BF=5-. 則DE=10-5+=5+,
則直角梯形OADE的面積是: (OA+DE)×OE=(5+5+)×5=25+.
扇形OAE的面積是: . 則陰影部分的面積是:25+- .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了拉動內(nèi)需,廣東啟動“家電下鄉(xiāng)”活動.某家電公司銷售給農(nóng)戶的Ⅰ型冰箱和Ⅱ型冰箱在啟動活動前一個月共售出980臺,啟動活動后的第一個月銷售給農(nóng)戶的Ⅰ型和Ⅱ型冰箱的銷量分別比啟動活動前一個月增長30%、25%,這兩種型號的冰箱共售出1254臺.在啟動活動前的一個月,銷售給農(nóng)戶的Ⅰ型冰箱和Ⅱ型冰箱分別為多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果自然數(shù)m使得作豎式加法時對應(yīng)的每個數(shù)位都不產(chǎn)生進(jìn)位,則稱m為“幸運數(shù)”.
例如:12,321都是“幸運數(shù)”,理由是12+13+14及321+322+323每個數(shù)位都不產(chǎn)生進(jìn)位;50,123都不是“幸運數(shù)”,理由是50+51+52及123+124+125十位或個位分別產(chǎn)生了進(jìn)位.
(1)判斷2019和2020是否是“幸運數(shù)”?請說明理由;
(2)求出三位數(shù)中小于200且是3的倍數(shù)的“幸運數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺“走基層”欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是【 】
(A)汽車在高速公路上的行駛速度為100km/h
(B)鄉(xiāng)村公路總長為90km
(C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h
(D)該記者在出發(fā)后4.5h到達(dá)采訪地
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當(dāng)點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQ⊥AB的延長線于點Q.
(1)求線段PQ的長;
(2)問:點P在何處時,△PFD∽△BFP,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P,且AE=CF.
(1)求證:AF=BE,并求∠FPB的度數(shù);
(2)若AE=2,試求AP·AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關(guān)于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com