【題目】某企業(yè)銷售某商品,以“線上”與“線下”相結(jié)合的方式一共銷售了100件.設(shè)該商品線下的銷售量為件,線下銷售的每件利潤為元,線上銷售的每件利潤為元.下圖中折線、線段分別表示之間的函數(shù)關(guān)系.

1)當(dāng)時,線上的銷售量為_______件;

2)求線段所表示的之間的函數(shù)表達式;

3)當(dāng)線下的銷售量為多少時,售完這100件商品所獲得的總利潤最大?最大利潤是多少?

【答案】160;(2;(3)當(dāng)線下的銷售量為60件時,總利潤最大,最大值為11800

【解析】

1)根據(jù)“線上”與“線下”相結(jié)合的方式一共銷售了100件.可求得線上的銷售量;

2)用待定系數(shù)法解答便可;

3)根據(jù)已知條件求出線上與線下的利潤與x的函數(shù)關(guān)系,進而得總利潤與x的函數(shù)關(guān)系式,再根據(jù)函數(shù)的性質(zhì)和求最值的方法繼續(xù)解答便可.

1)100-40=60(件),

故答案為:60;

2)設(shè)為常數(shù),),

∵圖像過點,

解得:

3)設(shè)總利潤為元.

因為線下的銷售量為件,所以線上的銷售量為()件;

根據(jù)圖像知,線上的每件利潤100元.

當(dāng)時,設(shè),為常數(shù),),

∵圖像過點、

解得:

∴當(dāng)時,此時的最大值為11800

當(dāng)時,,

∴當(dāng)時,的增大而減小,

∴當(dāng)時,此時的最大值為11750

綜上,當(dāng)時,的最大值為11800,

答:當(dāng)線下的銷售量為60件時,總利潤最大,最大值為11800元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°,BC = 3,AC = 4,點D為邊AB上一點.將△BCD沿直線CD翻折,點B落在點E處,聯(lián)結(jié)AE.如果AE // CD,那么BE =________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)測驗中,八年級(1)班的成績?nèi)缦卤恚?/span>

分?jǐn)?shù)

65

70

75

80

85

90

95

100

人數(shù)

2

3

10

6

4

7

6

2

1)本次數(shù)學(xué)測驗成績的平均數(shù),中位數(shù),眾數(shù)各是多少?

2)若老師把人數(shù)中的數(shù)據(jù)“10”看成了“9”,數(shù)據(jù)“7”看成了“8”,則平均數(shù),中位數(shù),眾數(shù)中不受影響的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個矩形紙片ABCDAB12,BC6,點EBC邊上,將△CDE沿DE折疊,點C落在C'處;DC'EC'分別交ABF,G,若GEGF,則sinCDE的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有分別標(biāo)注數(shù)字為1,2、3的三個小球,這些球除標(biāo)注的數(shù)字外都相同.

1)攪勻后從中任意摸出一個球,標(biāo)注的數(shù)字恰好為2的概率是________

2)攪勻后從中任意摸出一個球,記錄下數(shù)字后放回袋中并攪勻,再從袋中任意摸出一個球,求兩次數(shù)字的和大于3的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線的頂點為,與軸的交點為

1)求拋物線的解析式;

2M軸上方拋物線上的一點,與拋物線的對稱軸交于點,若,求點的坐標(biāo);

3)如圖2,將原拋物線沿對稱軸平移后得到新拋物線為,,是新拋物線在第一象限內(nèi)互不重合的兩點,軸,軸,垂足分別為,,若始終存在這樣的點,,滿足,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC.

1)若以點A為圓心的圓與邊BC相切于點D,請在下圖中作出點D;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)

2)在(1)的條件下,若該圓與邊AC相交于點E,連接DE,當(dāng)∠BAC=100°時,求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtEBC中,∠B90°ABE邊上一點,以邊AC上的點O為圓心、OA為半徑的圓OEC相切,D為切點,ADBC

1)求證:∠E=∠ACB

2)若AD1,,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O中,ABAC,∠ACB75°,BC1,則陰影部分的面積是(  )

A.1+πB.πC.πD.1+π

查看答案和解析>>

同步練習(xí)冊答案