【題目】我國是一個嚴重缺水的國家.為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費.該市某戶居民5月份用水x噸,應交水費y元.
(1)若0<x≤6,請寫出y與x的函數(shù)關系式.
(2)若x>6,請寫出y與x的函數(shù)關系式.
(3)如果該戶居民這個月交水費27元,那么這個月該戶用了多少噸水?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為等邊三角形ABC內(nèi)一點,連接OA,OB,OC,以OB為一邊作∠OBM=60°,且BO=BM,連接CM,OM.
(1)判斷AO與CM的大小關系并證明;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個矩形發(fā)生變形后成為一個平行四邊形,設這個平行四邊形相鄰兩個內(nèi)角中較小的一個內(nèi)角為α,我們把的值叫做這個平行四邊形的變形度.
(1)若矩形發(fā)生變形后的平行四邊形有一個內(nèi)角是120度,則這個平行四邊形的變形是 .
猜想證明:
(2)設矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2, 之間的數(shù)量關系,并說明理由;
拓展探究:
(3)如圖2,在矩形ABCD中,E是AD邊上的一點,且AB2=AEAD,這個矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對應點,連接B1E1,B1D1,若矩形ABCD的面積為4 (m>0),平行四邊形A1B1C1D1的面積為2(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價x (元/千克)有如下關系:w=﹣2x+80.設這種產(chǎn)品每天的銷售利潤為y (元).
(1)求y與x之間的函數(shù)關系式,自變量x的取值范圍;
(2)當銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年里約奧運會,中國女排的姑娘們在郎平教練指導下,通過刻苦訓練,取得了世界冠軍,為國爭光,如圖,已知排球場的長度OD為18米,位于球場中線處球網(wǎng)的高度AB為2.43米,一隊員站在點O處發(fā)球,排球從點O的正上方1.8米的C點向正前方飛出,當排球運行至離點O的水平距離OE為7米時,到達最高點G建立如圖所示的平面直角坐標系.
(1)當球上升的最大高度為3.2米時,求排球飛行的高度y(單位:米)與水平距離x(單位:米)的函數(shù)關系式.(不要求寫自變量x的取值范圍).
(2)在(1)的條件下,對方距球網(wǎng)0.5米的點F處有一隊員,他起跳后的最大高度為3.1米,問這次她是否可以攔網(wǎng)成功?請通過計算說明.
(3)若隊員發(fā)球既要過球網(wǎng),又不出邊界,問排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒出界)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀,再因式分解:x4+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2-2x+2)(x2+2x+2),按照這種方法把多項式x4+64因式分解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com