【題目】某商店購(gòu)進(jìn)一批進(jìn)價(jià)為20元/件的日用商品,第一個(gè)月,按進(jìn)價(jià)提高50%的價(jià)格出售,售出400件;第二個(gè)月,商店準(zhǔn)備在不低于原售價(jià)的基礎(chǔ)上進(jìn)行加價(jià)銷售,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會(huì)導(dǎo)致銷售量的減少.銷售量y(件)與銷售單價(jià)x(元)的關(guān)系如圖所示.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)第二個(gè)月的銷售單價(jià)定為多少元時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)y與x之間的函數(shù)表達(dá)式為y=-20x+1000.(2)第二個(gè)月的銷售單價(jià)定為35元時(shí),可獲得最大利潤(rùn),最大利潤(rùn)是4500元.
【解析】試題分析:(1)根據(jù)圖象利用待定系數(shù)法進(jìn)行求解即可得;
(2)根據(jù)利潤(rùn)=單件利潤(rùn)×銷售量,列出函數(shù)解析式,再利用二次函數(shù)的性質(zhì)即可得.
試題解析:(1)設(shè)y與x之間的函數(shù)表達(dá)式為y=kx+b,
將點(diǎn)(30,400)、(35,300)代入y=kx+b中得,解得 ,
∴y與x之間的函數(shù)表達(dá)式為y=-20x+1000;
(2)設(shè)第二個(gè)月的利潤(rùn)為w元,由已知得w=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000=-20(x-35)2+4500,
∵-20<0,∴當(dāng)x=35時(shí),w取最大值,最大值為4500.故第二個(gè)月的銷售單價(jià)定為35元時(shí),可獲得最大利潤(rùn),最大利潤(rùn)是4500元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】股民小胡上星期五以每股13.1元的價(jià)格買進(jìn)某種股票1000股,該股票本周的漲跌情況(表格數(shù)字表示比前--天漲或跌多少元)如下表(單位:元):
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 | -0.3 | 0 | -0.1 | +0.2 | +0.1 |
(1)本周內(nèi)最高價(jià)是每股__________元最低價(jià)是每股元_________;
(2)如果小胡在星期五收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在(3,0)和(4,0)之間,則下列結(jié)論:
①ac
②a﹣b+c>0;
③當(dāng)時(shí),y隨x的增大而增大
若(﹣,y1),(,y2)是拋物線上的兩點(diǎn),則y1y2;
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系式 ;
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請(qǐng)畫出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形中,,,動(dòng)點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)以2厘米/秒的速度向終點(diǎn)移動(dòng),點(diǎn)以1厘米/秒的速度向移動(dòng),當(dāng)有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為,問:
(1)當(dāng)秒時(shí),四邊形面積是多少?
(2)當(dāng)為何值時(shí),點(diǎn)和點(diǎn)距離是?
(3)當(dāng)_________時(shí),以點(diǎn)、、為頂點(diǎn)的三角形是等腰三角形.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為(,),點(diǎn)是軸正半軸上的一動(dòng)點(diǎn),以為邊作等腰直角,使,設(shè)點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為,能表示與的函數(shù)關(guān)系的圖象大致是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題9分)據(jù)報(bào)道,“國(guó)際剪刀石頭布協(xié)會(huì)”提議將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目.某校學(xué)生會(huì)想知道學(xué)生對(duì)這個(gè)提議的了解程度,隨機(jī)抽取部分學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有___名,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為___;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中對(duì)將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目的提議達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(3)“剪刀石頭布”比賽時(shí)雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢(shì)中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢(shì),則算打平.若小剛和小明兩人只比賽一局,請(qǐng)用樹狀圖或列表法求兩人打平的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題發(fā)現(xiàn)】
(1)如圖(1),四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為__________;
【拓展探究】
(2)如圖(2),在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;
【解決問題】
(3)如圖(3),在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫出BD'平方的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com