分析 (1)由E為AB的中點(diǎn),得到AB=2BE,等量代換得到BE=AD,推出△ABD≌△BCE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)已知條件得到AE=BE=2,BC=4,根據(jù)余角的性質(zhì)得到∠AFE=∠BEC,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)根據(jù)相似三角形的性質(zhì)得到AF=$\frac{1}{2}$AE,設(shè)AF=k,則AE=BE=2k,BC=4k,根據(jù)勾股定理得到EF=$\sqrt{5}$k,CE=2$\sqrt{5}$k,CF=5k,由三角函數(shù)的定義即可得到結(jié)論.
解答 解:(1)∵E為AB的中點(diǎn),
∴AB=2BE,
∵AB=2AD,
∴BE=AD,
∵∠A=90°,AD∥BC,
∴∠ABC=90°,
在△ABD與△BCE中,$\left\{\begin{array}{l}{AB=BC}\\{∠A=∠ABC}\\{AD=BE}\end{array}\right.$,
∴△ABD≌△BCE,
∴CE=BD;
(2)∵AB=4,
∴AE=BE=2,BC=4,
∵FE⊥CE,
∴∠FEC=90°,
∴∠AEF+∠AFE=∠AEF+∠BEC=90°,
∴∠AFE=∠BEC,
∴△AEF∽△BCE,
∴$\frac{AF}{BE}=\frac{AE}{BC}$,
∴AF=1;
(3)∵△AEF∽△BCE,
∴$\frac{AF}{BE}=\frac{AE}{BC}$,
∴AF=$\frac{1}{2}$AE,
設(shè)AF=k,則AE=BE=2k,BC=4k,
∴EF=$\sqrt{A{E}^{2}+A{F}^{2}}$=$\sqrt{5}$k,
CE=$\sqrt{B{E}^{2}+B{C}^{2}}$=2$\sqrt{5}$k,
∴CF=$\sqrt{E{F}^{2}+C{E}^{2}}$=5k,
∴sin∠EFC=$\frac{CE}{CF}$=$\frac{2\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,平行線的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 16.5 | C. | 17 | D. | 18 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com