【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:

①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),

其中正確結(jié)論的個(gè)數(shù)是( )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

【答案】B

【解析】

試題分析:利用二次函數(shù)圖象的相關(guān)知識(shí)與函數(shù)系數(shù)的聯(lián)系,需要根據(jù)圖形,逐一判斷.

解:拋物線和x軸有兩個(gè)交點(diǎn),

b2﹣4ac>0,

4ac﹣b2<0,正確;

對稱軸是直線x=﹣1,和x軸的一個(gè)交點(diǎn)在點(diǎn)(0,0)和點(diǎn)(1,0)之間,

拋物線和x軸的另一個(gè)交點(diǎn)在(﹣3,0)和(﹣2,0)之間,

把(﹣2,0)代入拋物線得:y=4a﹣2b+c>0,

4a+c>2b,錯(cuò)誤;

把x=1代入拋物線得:y=a+b+c<0,

2a+2b+2c<0,

=﹣1,

b=2a,

3b+2c<0,正確;

拋物線的對稱軸是直線x=﹣1,

y=a﹣b+c的值最大,

即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,

am2+bm+b<a,

即m(am+b)+b<a,正確;

即正確的有3個(gè),

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司2月份的利潤為160萬元,4月份的利潤250萬元,則平均每月的增長率為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.

(1)求ECD的度數(shù);

(2)若CE=5,求BC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗的家和學(xué)校在一條筆直的馬路旁,某天小麗沿著這條馬路上學(xué),先從家步行到公交站臺(tái)甲,再乘車到公交站臺(tái)乙下車,最后步行到學(xué)校(在整個(gè)過程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學(xué)校之間的距離y(米)與她離家時(shí)間x(分鐘)之間的函數(shù)關(guān)系.

(1)求小麗步行的速度及學(xué)校與公交站臺(tái)乙之間的距離;

(2)當(dāng)8≤x≤15時(shí),求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).

(1)求拋物線的解析式;

(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請直接寫出點(diǎn)F的坐標(biāo);

(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求ACQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形的邊長為a,以各邊才為直徑在正方形內(nèi)畫半圓,所圍成的圖形(圖中陰影部分)的面積為(

Aa2 B﹣a2 Ca2 Dπa2﹣a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年西昌市的洋蔥喜獲豐收,據(jù)估計(jì)洋蔥的產(chǎn)量約是325 000 000千克,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列運(yùn)算正確的是(

A. 3)+(4)=3+(4)= 1

B. 3)+(4)=3+4=1

C. 3)4)=3+4=1

D. 3)4)=34=7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距900千米,一列快車從甲地出發(fā)勻速開往乙地,速度為120千米/時(shí);快車開出30分鐘時(shí),一列慢車從乙地出發(fā)勻速開往甲地,速度為90千米/時(shí).設(shè)慢車行駛的時(shí)間為x小時(shí),快車到達(dá)乙地后停止行駛,根據(jù)題意解答下列問題:

(1)當(dāng)快車與慢車相遇時(shí),求慢車行駛的時(shí)間;

(2)請從下列(A),(B)兩題中任選一題作答.

我選擇:

(A)當(dāng)兩車之間的距離為315千米時(shí),求快車所行的路程;

(B)①在慢車從乙地開往甲地的過程中,求快慢兩車之間的距離;(用含x的代數(shù)式表示)

②若第二列快車也從甲地出發(fā)勻速駛往乙地,速度與第一列快車相同,在第一列快車與慢車相遇后30分鐘時(shí),第二列快車與慢車相遇,直接寫出第二列快車比第一列快車晚出發(fā)多少小時(shí).

查看答案和解析>>

同步練習(xí)冊答案