【題目】如圖,在平面直角坐標系中,直線y=x+3分別交x軸、y軸于A,C兩點,拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點,與x軸交于點B(1,0).

(1)求拋物線的解析式;

(2)點D為直線AC上一點,點E為拋物線上一點,且D,E兩點的橫坐標都為2,點F為x軸上的點,若四邊形ADEF是平行四邊形,請直接寫出點F的坐標;

(3)若點P是線段AC上的一個動點,過點P作x軸的垂線,交拋物線于點Q,連接AQ,CQ,求ACQ的面積的最大值.

【答案】(1)y=﹣x2﹣2x+3;(2)(7,0);(3)

【解析】

試題分析:(1)將x=0代入直線的解析式求得點C(0,3),將y=0代入求得x=﹣3,從而得到點A(﹣3,0),設拋物線的解析式為y=a(x+3)(x﹣1),將點C的坐標代入可求得a=﹣1,從而得到拋物線的解析式為y=﹣x2﹣2x+3;

(2)將x=2分別代入直線和拋物線的解析式,求得點D(2,5)、E(2,﹣5),然后根據(jù)平行四邊形的對角線互相平分可求得點F的坐標;

(3)如圖2所示:設點P的坐標為(a,a+3),則點Q的坐標為(a,﹣a2﹣2a+3).QP=﹣a2﹣3a,由三角形的面積公式可知:ACQ的面積=然后利用配方法求得二次函數(shù)的最大值即可

解:(1)將x=0代入y=x+3,得y=3,

點C的坐標為(0,3).

將y=0代入y=x+3得到x=﹣3.

點A的坐標為(﹣3,0).

設拋物線的解析式為y=a(x+3)(x﹣1),將點C的坐標代入得:﹣3a=3.

解得:a=﹣1.

拋物線的解析式為y=﹣(x+3)(x﹣1).

整理得:y=﹣x2﹣2x+3;

(2)將x=2代入y=x+3得,y=5,

點D(2,5).

將x=2代入y=﹣x2﹣2x+3得:y=﹣5.

點E的坐標為(2,﹣5).

如圖1所示:

四邊形ADFE為平行四邊形,

點F的坐標為(7,0).

(3)如圖2所示:

設點P的坐標為(a,a+3),則點Q的坐標為(a,﹣a2﹣2a+3).

QP=﹣a2﹣2a+3﹣(a+3)=﹣a2﹣2a+3﹣a﹣3=﹣a2﹣3a.

∵△ACQ的面積=,

∴△ACQ的面積===(a2+

∴△ACQ的面積的最大值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A. 要了解人們對低碳生活的了解程度,宜采用普查方式

B. 隨機事件的概率為50%,必然事件的概率為100%

C. 一組數(shù)據(jù)3、4、5、5、6、7的眾數(shù)和中位數(shù)都是5

D. 若甲組數(shù)據(jù)的方差是0.168,乙組數(shù)據(jù)的方差是0.034,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.

(1)有月租費的收費方式是 (填①或②),月租費是 元;

(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關系式;

(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點,BD與過點C的直線互相垂直,垂足為點D,BD與半圓O交于點E,且BC平分DBA

(1)求證:CD是半圓O的切線.

(2)若DC=8,BE=4,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四個命題:①對頂角相等;②內(nèi)錯角相等;③平行于同一條直線的兩條直線互相平行;④如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等。其中真命題的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結論:

①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),

其中正確結論的個數(shù)是( )

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】月球的半徑約為1738000米,1738000這個數(shù)用科學記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD中,MAN=45°,MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.當MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),易證BM+DN=MN.

(1)當MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖2),線段BM、DN和MN之間有怎樣的數(shù)量關系?寫出猜想,并加以證明;

(2)當MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果等腰三角形的兩邊長分別為25,則它的周長為( 。

A. 9 B. 7 C. 12 D. 912

查看答案和解析>>

同步練習冊答案