【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:D是BC的中點;
(2)若BA⊥AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
【答案】(1)詳見解析;(2)四邊形AFBD是菱形,理由詳見解析.
【解析】
(1)首先推知△AFE≌△DCE(AAS),則其對應邊相等AF=CD,結(jié)合已知條件AF=BD得到:BD=CD,即D是BC的中點;
(2)四邊形AFBD是菱形.連接FD.構(gòu)造平行四邊形AFDC.根據(jù)對角線相互垂直的平行四邊形是菱形證得結(jié)論:四邊形AFBD是菱形.
(1)證明:∵AF∥BC,
∴∠AFE=∠DCE,∠FAE=∠CDE.
∵E為AD的中點,
∴AE=DE.
∴,
∴△AFE≌△DCE(AAS).
∴AF=CD.
∵AF=BD,
∴BD=CD,即D是BC的中點;
(2)四邊形AFBD是菱形.理由如下:
連接FD.∵AF∥BD且AF=BD,
∴四邊形AFBD是平行四邊形.
同理可證四邊形AFDC是平行四邊形.
∴FD∥AC.
∵BA⊥AC,
∴BA⊥FD.
∴四邊形AFBD是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BE是⊙O的弦,BC是∠ABE的平分線且交⊙O于點C,連接AC,CE,過點C作CD⊥BE,交BE的延長線于點D.
(1)∠DCE ∠CBE;(填“>”“<”或“=”)
(2)求證:DC是⊙O的切線;
(3)若⊙O的直徑為10,sin∠BAC=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一項工程,由甲、乙兩個工程隊共同完成,若乙工程隊單獨完成需要60天;若兩個工程隊合作18天后,甲工程隊再單獨做10天也恰好完成.
(1)甲工程隊單獨完成此項工程需要幾天?
(2)若甲工程隊每天施工費用為0.6萬元,乙工程隊每天施工費用為0.35萬元,要使該項目總施工費用不超過22萬元,則乙工程隊至少施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,-3)三點,其頂點為D,對稱軸是直線,與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸上的一個動點,求△PBC周長的最小值;
(3)如圖2,若E是線段AD上的一個動點(E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,△ADF的面積為S.
①試求S與m的函數(shù)關系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.
Ⅰ的面積等于______;
Ⅱ若四邊形DEFG是中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法不要求證明________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個運輸小隊分別從兩個倉庫以相同的工作效率調(diào)運一批物資,兩隊同時開始工作.第二小隊工作5天后,由于技術問題檢修設備5天,為趕上進度,再次開工后他們將工作效率提高到原先的2倍,結(jié)果和第一小隊同時完成任務.在兩隊調(diào)運物資的過程中,兩個倉庫物資的剩余量y t與第一小隊工作時間x天的函數(shù)圖像如圖所示.
(1)①求線段AC所表示的y與x之間的函數(shù)表達式;
②求點F的坐標,并解釋點F的實際意義.
(2)如果第二小隊沒有檢修設備,按原來的工作效率正常工作,那么他們完成任務的天數(shù)是 天.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為緩解某學校大班額現(xiàn)狀,某市決定通過新建學校來解決該問題.經(jīng)測算,建設6個小學,5個中學,需費用13800萬元,建設10個小學,7個中學,需花費20600萬元.
(1)求建設一個小學,一個中學各需多少費用.
(2)該市共計劃建設中小學80所,其中小學的建設數(shù)量不超過中學建設數(shù)量的1.5倍.設建設小學的數(shù)量為x個,建設中小學校的總費用為y萬元.
①求y關于x的函數(shù)關系式;
②如何安排中小學的建設數(shù)量,才能使建設總費用最低?
(3)受國家開放二胎政策及外來務工子女就讀的影響,預計在小學就讀人數(shù)會有明顯增加,現(xiàn)決定在(2)中所定的方案上增加投資以擴大小學的就讀規(guī)模,若建設小學總費用不超過建設中學的總費用,則每所小學最多可增加多少費用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的點P和圖形M,給出如下定義:Q為圖形M上任意一點,如果兩點間的距離有最大值,那么稱這個最大值為點P與圖形M間的開距離,記作.已知直線與x軸交于點A,與y軸交于點B,的半徑為1.
(1)若,
①求的值;
②若點C在直線上,求的最小值;
(2)以點A為中心,將線段順時針旋轉(zhuǎn)得到,點E在線段組成的圖形上,若對于任意點E,總有,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,點是拋物線的頂點.
(1)求拋物線的解析式.
(2)點是軸負半軸上的一點,且,點在對稱軸右側(cè)的拋物線上運動,連接,與拋物線的對稱軸交于點,連接,當平分時,求點的坐標.
(3)直線交對稱軸于點,是坐標平面內(nèi)一點,請直接寫出與全等時點的坐標__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com