雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,在雙曲線右支上存在點(diǎn)P,滿足|PF1|=k|PF2|,則此雙曲線的離心率e的最大值為( 。
A.
k
k-2
B.
k+1
k-1
C.
k-1
k-2
D.
k
k-1
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F1作傾斜角為30°的直線交雙曲線右支于M點(diǎn),若MF2垂直于x軸,則雙曲線的離心率為( 。
A、
6
B、
3
C、
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,若P為其上一點(diǎn),且|PF1|=2|PF2|,則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個(gè)焦點(diǎn)為F1、F2,若P為其上一點(diǎn),且|PF1|=2|PF2|,則雙曲線離心率的取值范圍為( 。
A、(1,3)
B、(1,3]
C、(3,+∞)
D、[3,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
,則漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率是2,則
b2+1
3a
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右支上存在一點(diǎn),它到右焦點(diǎn)及左準(zhǔn)線的距離相等,則雙曲線離心率的取值范圍是(  )
A、(1,
2
]
B、[
2
,+∞)
C、(1,
2
+1]
D、[
2
+1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F1作傾斜角30°的直線交雙曲線右支于M點(diǎn),若MF2垂直于x軸,則雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0),過焦點(diǎn)F1的弦AB(A、B在雙曲線的同支上)長(zhǎng)為m,另一焦點(diǎn)為F2,求△ABF2的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足如下條件:(1)ab=
3
;(2)過右焦點(diǎn)F的直線l的斜率為
21
2
,交y軸于點(diǎn)P,線段PF交雙曲線于點(diǎn)Q,且|PQ|:|QF|=2:1,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P為其上一點(diǎn),且|PF1|=m|PF2|(m>1),若雙曲線的離心率e∈[3,+∞),則實(shí)數(shù)m的最大值為(  )

查看答案和解析>>


同步練習(xí)冊(cè)答案