設(shè)a、b、c是三角形的三邊,則關(guān)于x的一元二次方程cx2+(a+b)x+
c
4
=0
的根的情況是(  )
A.方程有兩個(gè)相等實(shí)根
B.方程有兩個(gè)不等的正實(shí)根
C.方程有兩個(gè)不等的負(fù)實(shí)根
D.方程無(wú)實(shí)根
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:

請(qǐng)你參考以上定理和結(jié)論,解答下列問(wèn)題:

設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.

(1)當(dāng)為等腰直角三角形時(shí),求

(2)當(dāng)為等邊三角形時(shí),求

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:

請(qǐng)你參考以上定理和結(jié)論,解答下列問(wèn)題:
設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.
(1)當(dāng)為等腰直角三角形時(shí),求
(2)當(dāng)為等邊三角形時(shí),求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆廣東省汕頭市濠江區(qū)中考模擬考試數(shù)學(xué)卷(帶解析) 題型:解答題

是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:

請(qǐng)你參考以上定理和結(jié)論,解答下列問(wèn)題:
設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.
(1)當(dāng)為等腰直角三角形時(shí),求
(2)當(dāng)為等邊三角形時(shí),求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省汕頭市濠江區(qū)中考模擬考試數(shù)學(xué)卷(解析版) 題型:解答題

是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:.  我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:

請(qǐng)你參考以上定理和結(jié)論,解答下列問(wèn)題:

設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.

(1)當(dāng)為等腰直角三角形時(shí),求

(2)當(dāng)為等邊三角形時(shí),求

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)a、b、c是三角形的三邊,則關(guān)于x的一元二次方程cx2+(a+b)x+
c
4
=0
的根的情況是( 。
A.方程有兩個(gè)相等實(shí)根
B.方程有兩個(gè)不等的正實(shí)根
C.方程有兩個(gè)不等的負(fù)實(shí)根
D.方程無(wú)實(shí)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:.  我們把它們稱為根與系數(shù)關(guān)系定理.

如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:

請(qǐng)你參考以上定理和結(jié)論,解答下列問(wèn)題:

設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.

(1)當(dāng)為等腰直角三角形時(shí),求

(2)當(dāng)為等邊三角形時(shí),求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年四川省雅安中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)a、b、c是三角形的三邊,則關(guān)于x的一元二次方程c的根的情況是( )
A.方程有兩個(gè)相等實(shí)根
B.方程有兩個(gè)不等的正實(shí)根
C.方程有兩個(gè)不等的負(fù)實(shí)根
D.方程無(wú)實(shí)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)a、b、c是三角形的三邊,則關(guān)于x的一元二次方程c數(shù)學(xué)公式的根的情況是


  1. A.
    方程有兩個(gè)相等實(shí)根
  2. B.
    方程有兩個(gè)不等的正實(shí)根
  3. C.
    方程有兩個(gè)不等的負(fù)實(shí)根
  4. D.
    方程無(wú)實(shí)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:甘肅省中考真題 題型:解答題

若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-,x1﹒x2.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個(gè)交點(diǎn)間的距離為:
AB=|x1-x2|=
參考以上定理和結(jié)論,解答下列問(wèn)題:設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)A(x1,0)、B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),求b2-4ac的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省九年級(jí)課程結(jié)束考試數(shù)學(xué)卷 題型:選擇題

如圖,正三角形ABC的邊長(zhǎng)為1,E、F、G分別是AB、BC、CA上的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長(zhǎng)為x,則y關(guān)于x的函數(shù)的圖象大致是(  ▲  )

 

查看答案和解析>>


同步練習(xí)冊(cè)答案