0  438111  438119  438125  438129  438135  438137  438141  438147  438149  438155  438161  438165  438167  438171  438177  438179  438185  438189  438191  438195  438197  438201  438203  438205  438206  438207  438209  438210  438211  438213  438215  438219  438221  438225  438227  438231  438237  438239  438245  438249  438251  438255  438261  438267  438269  438275  438279  438281  438287  438291  438297  438305  447090 

1.Tom was not pleased with his boss and planned to r_______.

試題詳情

5.變?yōu)橹骶、抓好訓(xùn)練

變是本章的主題,在三角變換考查中,角的變換,三角函數(shù)名的變換,三角函數(shù)次數(shù)的變換,三角函數(shù)式表達(dá)形式的變換等比比皆是,在訓(xùn)練中,強(qiáng)化變意識是關(guān)鍵,但題目不可太難,較特殊技巧的題目不做,立足課本,掌握課本中常見問題的解法,把課本中習(xí)題進(jìn)行歸類,并進(jìn)行分析比較,尋找解題規(guī)律。

針對高考中題目看,還要強(qiáng)化變角訓(xùn)練,經(jīng)常注意收集角間關(guān)系的觀察分析方法.另外如何把一個含有不同名或不同角的三角函數(shù)式化為只含有一個三角函數(shù)關(guān)系式的訓(xùn)練也要加強(qiáng),這也是高考的重點(diǎn).同時應(yīng)掌握三角函數(shù)與二次函數(shù)相結(jié)合的題目

試題詳情

4.加強(qiáng)三角函數(shù)應(yīng)用意識的訓(xùn)練

1999年高考理科第20題實(shí)質(zhì)是一個三角問題,由于考生對三角函數(shù)的概念認(rèn)識膚淺,不能將以角為自變量的函數(shù)迅速與三角函數(shù)之間建立聯(lián)系,造成思維障礙,思路受阻.實(shí)際上,三角函數(shù)是以角為自變量的函數(shù),也是以實(shí)數(shù)為自變量的函數(shù),它產(chǎn)生于生產(chǎn)實(shí)踐,是客觀實(shí)際的抽象,同時又廣泛地應(yīng)用于客觀實(shí)際,故應(yīng)培養(yǎng)實(shí)踐第一的觀點(diǎn).總之,三角部分的考查保持了內(nèi)容穩(wěn)定,難度穩(wěn)定,題量穩(wěn)定,題型穩(wěn)定,考查的重點(diǎn)是三角函數(shù)的概念、性質(zhì)和圖象,三角函數(shù)的求值問題以及三角變換的方法。

試題詳情

3.解答三角高考題的策略。

(1)發(fā)現(xiàn)差異:觀察角、函數(shù)運(yùn)算間的差異,即進(jìn)行所謂的“差異分析”。

(2)尋找聯(lián)系:運(yùn)用相關(guān)公式,找出差異之間的內(nèi)在聯(lián)系。

(3)合理轉(zhuǎn)化:選擇恰當(dāng)?shù)墓剑偈共町惖霓D(zhuǎn)化

試題詳情

2.證明三角等式的思路和方法。

(1)思路:利用三角公式進(jìn)行化名,化角,改變運(yùn)算結(jié)構(gòu),使等式兩邊化為同一形式。

(2)證明三角不等式的方法:比較法、配方法、反證法、分析法,利用函數(shù)的單調(diào)性,利用正、余弦函數(shù)的有界性,利用單位圓三角函數(shù)線及判別法等。

試題詳情

從近年高考的考查方向來看,這部分常常以選擇題和填空題的形式出現(xiàn),有時也以大題的形式出現(xiàn),分值約占5%因此能否掌握好本重點(diǎn)內(nèi)容,在一定的程度上制約著在高考中成功與否。

1.兩角和與兩角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在學(xué)習(xí)時應(yīng)注意以下幾點(diǎn):

(1)不僅對公式的正用逆用要熟悉,而且對公式的變形應(yīng)用也要熟悉;

(2)善于拆角、拼角

,等;

(3)注意倍角的相對性

(4)要時時注意角的范圍

(5)化簡要求

熟悉常用的方法與技巧,如切化弦,異名化同名,異角化同角等。

試題詳情

題型1:兩角和與差的三角函數(shù)

例1.已知,求cos。

分析:因?yàn)?sub>既可看成是看作是的倍角,因而可得到下面的兩種解法。

解法一:由已知sin+sin=1…………①,

cos+cos=0…………②,

2+②2得 2+2cos;

∴ cos。

2-②2得  cos2+cos2+2cos()=-1,

即2cos()()=-1。

解法二:由①得…………③

由②得…………④

④÷③得

點(diǎn)評:此題是給出單角的三角函數(shù)方程,求復(fù)角的余弦值,易犯錯誤是利用方程組解sin、cos 、 sin 、 cos,但未知數(shù)有四個,顯然前景并不樂觀,其錯誤的原因在于沒有注意到所求式與已知式的關(guān)系本題關(guān)鍵在于化和為積促轉(zhuǎn)化,“整體對應(yīng)”巧應(yīng)用。

例2.已知

[來源:ZXXK]

分析:由韋達(dá)定理可得到進(jìn)而可以求出的值,再將所求值的三角函數(shù)式用tan表示便可知其值

解法一:由韋達(dá)定理得tan,

所以tan

解法二:由韋達(dá)定理得tan,

所以tan[來源:]

。

點(diǎn)評:(1)本例解法二比解法一要簡捷,好的解法來源于熟練地掌握知識的系統(tǒng)結(jié)構(gòu),從而尋找解答本題的知識“最近發(fā)展區(qū)”。(2)運(yùn)用兩角和與差角三角函數(shù)公式的關(guān)鍵是熟記公式,我們不僅要記住公式,更重要的是抓住公式的特征,如角的關(guān)系,次數(shù)關(guān)系,三角函數(shù)名等抓住公式的結(jié)構(gòu)特征對提高記憶公式的效率起到至關(guān)重要的作用,而且抓住了公式的結(jié)構(gòu)特征,有利于在解題時觀察分析題設(shè)和結(jié)論等三角函數(shù)式中所具有的相似性的結(jié)構(gòu)特征,聯(lián)想到相應(yīng)的公式,從而找到解題的切入點(diǎn)。(3)對公式的逆用公式,變形式也要熟悉,如

題型2:二倍角公式

例3.化簡下列各式:

(1)

(2)。

  分析:(1)若注意到化簡式是開平方根和2以及其范圍不難找到解題的突破口;(2)由于分子是一個平方差,分母中的角,若注意到這兩大特征,不難得到解題的切入點(diǎn)

解析:(1)因?yàn)?sub>,

又因,

所以,原式=。

(2)原式=

   =

點(diǎn)評:(1)在二倍角公式中,兩個角的倍數(shù)關(guān)系,不僅限于2的二倍,要熟悉多種形式的兩個角的倍數(shù)關(guān)系,同時還要注意三個角的內(nèi)在聯(lián)系的作用,是常用的三角變換。(2)化簡題一定要找準(zhǔn)解題的突破口或切入點(diǎn),其中的降次,消元,切割化弦,異名化同名,異角化同角是常用的化簡技巧。(3)公式變形,。

例4.若。

分析:注意的兩變換,就有以下的兩種解法。

解法一:由,

 

解法二:,

[來源:學(xué)++網(wǎng)]

點(diǎn)評:此題若將的左邊展開成再求cosx,sinx的值,就很繁瑣,把,并注意角的變換2·運(yùn)用二倍角公式,問題就公難為易,化繁為簡所以在解答有條件限制的求值問題時,要善于發(fā)現(xiàn)所求的三角函數(shù)的角與已知條件的角的聯(lián)系,一般方法是拼角與拆角,

,

等。

題型3:輔助角公式

例5.已知正實(shí)數(shù)a,b滿足。

分析:從方程 的觀點(diǎn)考慮,如果給等式左邊的分子、分母同時除以a,則已知等式可化為關(guān)于程,從而可求出由,若注意到等式左邊的分子、分母都具有的結(jié)構(gòu),可考慮引入輔助角求解

解法一:由題設(shè)得

 

解法二:

解法三:

點(diǎn)評:以上解法中,方法一用了集中變量的思想,是一種基本解法;解法二通過模式聯(lián)想,引入輔助角,技巧性較強(qiáng),但輔助角公式,,或

在歷年高考中使用頻率是相當(dāng)高的,應(yīng)加以關(guān)注;解法三利用了換元法,但實(shí)質(zhì)上是綜合了解法一和解法二的解法優(yōu)點(diǎn),所以解法三最佳。

例6.(2009江蘇卷)函數(shù)(為常數(shù),)在閉區(qū)間上的圖象如圖所示,則=    .

答案  3

解析  考查三角函數(shù)的周期知識

 ,,所以

點(diǎn)評:本題主要考查三角函數(shù)的圖象和性質(zhì),考查利用三角公式進(jìn)行恒等變形的技能以及運(yùn)算能力。

(2009北京文)(本小題共12分)已知函數(shù).

(Ⅰ)求的最小正周期;

(Ⅱ)求在區(qū)間上的最大值和最小值.

解析 本題主要考查特殊角三角函數(shù)值、誘導(dǎo)公式、二倍角的正弦、三角函數(shù)在閉區(qū)間上的最值等基礎(chǔ)知識,主要考查基本運(yùn)算能力.

解(Ⅰ)∵

∴函數(shù)的最小正周期為.

(Ⅱ)由,∴

在區(qū)間上的最大值為1,最小值為.

點(diǎn)評:本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角公式進(jìn)行恒等變形的技能及運(yùn)算能力。

題型4:三角函數(shù)式化簡

例7.求sin220°+cos250°+sin20°cos50°的值

解析:原式=(1-cos40°)+(1+cos100°)+(sin70°-sin30°)

=1+(cos100°-cos40°)+sin70°-

-sin70°sin30°+sin70°

sin70°+sin70°=

點(diǎn)評:本題考查三角恒等式和運(yùn)算能力。

例8.已知函數(shù).

(Ⅰ)求的定義域;

(Ⅱ)設(shè)的第四象限的角,且,求的值

解析:(Ⅰ)由

在定義域?yàn)?sub> (Ⅱ)因?yàn)?sub>,且是第四象限的角,

  所以

 故

           

     

     

    。

題型5:三角函數(shù)求值

例9.設(shè)函數(shù)f(x)=cos2cos+sinrcosx+a(其中0,aR),且f(x)的圖象在y軸右側(cè)的第一個高點(diǎn)的橫坐標(biāo)為

(Ⅰ)求ω的值;

(Ⅱ)如果f(x)在區(qū)間上的最小值為,求a的值。

解析:(I)

依題意得

(II)由(I)知,。

又當(dāng)時,,故,從而在區(qū)間上的最小值為,故

例10.求函數(shù)=2+的值域和最小正周期

解析:y=cos(x+) cos(x-)+sin2x=cos2x+sin2x=2sin(2x+),

∴函數(shù)y=cos(x+) cos(x-)+sin2x的值域是[-2,2],最小正周期是π。

題型6:三角函數(shù)綜合問題

例11.(2009江蘇卷) 設(shè)向量

(1)若垂直,求的值;   

(2)求的最大值;

(3)若,求證:.   

[解析] 本小題主要考查向量的基本概念,同時考查同角三角函數(shù)的基本關(guān)系式、二倍角的正弦、兩角和的正弦與余弦公式,考查運(yùn)算和證明得基本能力。滿分14分

點(diǎn)評:本題主要考察以下知識點(diǎn):1、向量垂直轉(zhuǎn)化為數(shù)量積為0;2,特殊角的三角函數(shù)值;3、三角函數(shù)的基本關(guān)系以及三角函數(shù)的有界性;4.已知向量的坐標(biāo)表示求模,難度中等,計(jì)算量不大。

例12.設(shè)0<θ<,曲線x2sinθ+y2cosθ=1和x2cosθy2sinθ=1有4個不同的交點(diǎn)。

(1)求θ的取值范圍;

(2)證明這4個交點(diǎn)共圓,并求圓半徑的取值范圍

解析:(1)解方程組,得;

故兩條已知曲線有四個不同的交點(diǎn)的充要條件為,(0<θ<)0<θ<

(2)設(shè)四個交點(diǎn)的坐標(biāo)為(xi,yi)(i=1,2,3,4),則:xi2+yi2=2cosθ∈(,2)(i=1,2,3,4)。

故四個交點(diǎn)共圓,并且這個圓的半徑r=cosθ∈().

(2009上海卷文)(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分 .

   已知ΔABC的角A、B、C所對的邊分別是a、b、c,設(shè)向量,

 , .

(1)          若//,求證:ΔABC為等腰三角形;  

(2)          若,邊長c = 2,角C = ,求ΔABC的面積 .

證明:(1)

,其中R是三角形ABC外接圓半徑,   

為等腰三角形

解(2)由題意可知

由余弦定理可知,        

   

點(diǎn)評:本題注重考查應(yīng)用解方程組法處理曲線交點(diǎn)問題,這也是曲線與方程的基本方法,同時本題也突出了對三角不等關(guān)系的考查。

題型7:三角函數(shù)的應(yīng)用

例13.有一塊扇形鐵板,半徑為R,圓心角為60°,從這個扇形中切割下一個內(nèi)接矩形,即矩形的各個頂點(diǎn)都在扇形的半徑或弧上,求這個內(nèi)接矩形的最大面積.

分析:本題入手要解決好兩個問題,

(1)內(nèi)接矩形的放置有兩種情況,如圖2-19所示,應(yīng)該分別予以處理;

(2)求最大值問題這里應(yīng)構(gòu)造函數(shù),怎么選擇便于以此表達(dá)矩形面積的自變量

解析:如圖2-19(1)設(shè)∠FOA=θ,則FG=Rsinθ,

。

又設(shè)矩形EFGH的面積為S,那么

又∵0°<θ<60°,故當(dāng)cos(2θ-60°)=1,即θ=30′時,

如圖2-19 (2),設(shè)∠FOA=θ,則EF=2Rsin(30°-θ),在△OFG中,∠OGF=150°

設(shè)矩形的面積為S.

那么S=EFFG=4R2sinθsin(30°-θ)

=2R2[cos(2θ-30°)-cos30°]

又∵0<θ<30°,故當(dāng)cos(2θ-30°)=1

。

試題詳情

5.三角等式的證明

(1)三角恒等式的證題思路是根據(jù)等式兩端的特征,通過三角恒等變換,應(yīng)用化繁為簡、左右同一等方法,使等式兩端化“異”為“同”;

(2)三角條件等式的證題思路是通過觀察,發(fā)現(xiàn)已知條件和待證等式間的關(guān)系,采用代入法、消參法或分析法進(jìn)行證明。

試題詳情

4.三角函數(shù)的求值類型有三類

(1)給角求值:一般所給出的角都是非特殊角,要觀察所給角與特殊角間的關(guān)系,利用三角變換消去非特殊角,轉(zhuǎn)化為求特殊角的三角函數(shù)值問題;

(2)給值求值:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題的關(guān)鍵在于“變角”,如等,把所求角用含已知角的式子表示,求解時要注意角的范圍的討論;

(3)給值求角:實(shí)質(zhì)上轉(zhuǎn)化為“給值求值”問題,由所得的所求角的函數(shù)值結(jié)合所求角的范圍及函數(shù)的單調(diào)性求得角

試題詳情

3.三角函數(shù)式的化簡

常用方法:①直接應(yīng)用公式進(jìn)行降次、消項(xiàng);②切割化弦,異名化同名,異角化同角;③ 三角公式的逆用等。(2)化簡要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項(xiàng)數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)

(1)降冪公式

;;。

(2)輔助角公式

。

試題詳情


同步練習(xí)冊答案