0  428481  428489  428495  428499  428505  428507  428511  428517  428519  428525  428531  428535  428537  428541  428547  428549  428555  428559  428561  428565  428567  428571  428573  428575  428576  428577  428579  428580  428581  428583  428585  428589  428591  428595  428597  428601  428607  428609  428615  428619  428621  428625  428631  428637  428639  428645  428649  428651  428657  428661  428667  428675  447090 

12. 解:(1)如圖:;(2)  (b,a) ;

(3)由(2)得,D(1,-3) 關(guān)于直線l的對稱點的坐標為(-3,1),連接E交直線l于點Q,此時點QD、E兩點的距離之和最小 

設過(-3,1) 、E(-1,-4)的設直線的解析式為,則

,∴,∴.由 ,∴所求Q點的坐標為(,)

試題詳情

11. 解:由圖象可知,點在直線上,.解得直線的解析式為.令,可得直線與軸的交點坐標為.令,可得直線與軸的交點坐標為

試題詳情

10. 解:(1)由直角三角形紙板的兩直角邊的長為1和2,

兩點的坐標分別為

設直線所對應的函數(shù)關(guān)系式為.···························································· 2分

解得

所以,直線所對應的函數(shù)關(guān)系式為.····················································· 4分

(2)①點軸距離與線段的長總相等.

因為點的坐標為

所以,直線所對應的函數(shù)關(guān)系式為

又因為點在直線上,

所以可設點的坐標為

過點軸的垂線,設垂足為點,則有

因為點在直線上,所以有.······················· 6分

因為紙板為平行移動,故有,即

,所以

法一:故,

從而有

,

所以

又有.························································ 8分

所以,得,而,

從而總有.····································································································· 10分

法二:故,可得

所以

點坐標為

設直線所對應的函數(shù)關(guān)系式為

則有解得

所以,直線所對的函數(shù)關(guān)系式為.·············································· 8分

將點的坐標代入,可得.解得

,從而總有.························································· 10分

②由①知,點的坐標為,點的坐標為

.····································································· 12分

時,有最大值,最大值為

取最大值時點的坐標為.   14分

試題詳情

9.

解:(1)······························· (3分)

(2)由題意,可得:

.·········································································································· (5分)

時,

造這片林的總費用需45 000元.········································································· (8分)

試題詳情

8.

解:(1);

(2),

(天)

答:乙隊單獨完成這項工程要60天.

(3)(天)

答:圖中的值是28.

試題詳情

7. 解:(1)設之間的關(guān)系為一次函數(shù),其函數(shù)表達式為··················· 1分

,代入上式得,

  解得

········································································································· 4分

驗證:當時,,符合一次函數(shù);

時,,也符合一次函數(shù).

可用一次函數(shù)表示其變化規(guī)律,

而不用反比例函數(shù)、二次函數(shù)表示其變化規(guī)律.···························································· 5分

之間的關(guān)系是一次函數(shù),其函數(shù)表達式為································ 6分

(2)當時,由可得

即貨車行駛到處時油箱內(nèi)余油16升.········································································ 8分

(3)方法不唯一,如:

方法一:由(1)得,貨車行駛中每小時耗油20升,····················································· 9分

設在處至少加油升,貨車才能到達地.

依題意得,,···························································· 11分

解得,(升)··································································································· 12分

方法二:由(1)得,貨車行駛中每小時耗油20升,····················································· 9分

汽車行駛18千米的耗油量:(升)

之間路程為:(千米)

汽車行駛282千米的耗油量:

(升)······························································································· 11分

(升)················································································ 12分

方法三:由(1)得,貨車行駛中每小時耗油20升,····················································· 9分

設在處加油升,貨車才能到達地.

依題意得,

解得,············································································································· 11分

處至少加油升,貨車才能到達地.·························································· 12分

試題詳情

6. 解:(1)特征數(shù)為的一次函數(shù)為,

(2)拋物線與軸的交點為,

軸的交點為

,則,

,則,

時,滿足題設條件.

此時拋物線為

它與軸的交點為,

軸的交點為

一次函數(shù)為,

特征數(shù)為

試題詳情

5. 解⑴y=(63-55)x+(40-35)(500-x)……………3分

=2x+2500。即y=2x+2500(0≤x≤500),………………4分

⑵由題意,得55x+35(500-x)≤20000,………………6分

解這個不等式,得x≤125,………………………………7分

∴當x=125時,y最大值=3×12+2500=2875(元),…………9分

∴該商場購進A、B兩種品牌的飲料分別為125箱、375箱時,能獲得最大利潤2875元.………………………………………………………………10分

試題詳情

4. 解:設這個一次函數(shù)的解析式為y=kx+b.

解得,函數(shù)的解析式為y=-2x+3.

由題意,得,所以使函數(shù)為正值的x的范圍為

試題詳情

3. 解:(1),所以不能在60天內(nèi)售完這些椪柑,

    (千克)

    即60天后還有庫存5000千克,總毛利潤為

    W=;

  (2)

   要在2月份售完這些椪柑,售價x必須滿足不等式

  

   解得

   所以要在2月份售完這些椪柑,銷售價最高可定為1.4元/千克。

試題詳情


同步練習冊答案