過拋物線y=x2準線上任一點作拋物線的兩條切線.若切點分別為M,N,則直線MN過定點( )A. (0.1) B.(1.0) C. D. 查看更多

 

題目列表(包括答案和解析)

設拋物線C的方程為x2=4y,M為直線l:y=-m(m>0)上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(Ⅰ)當M的坐標為(0,-l)時,求過M,A,B三點的圓的標準方程,并判斷直線l與此圓的位置關(guān)系;
(Ⅱ)當m變化時,試探究直線l上是否存在點M,使MA⊥MB?若存在,有幾個這樣的點,若不存在,請說明理由.

查看答案和解析>>

設拋物線C的方程為x2=4y,M為直線l:y=-m(m>0)上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(Ⅰ)當M的坐標為(0,-l)時,求過M,A,B三點的圓的標準方程,并判斷直線l與此圓的位置關(guān)系;
(Ⅱ)當m變化時,試探究直線l上是否存在點M,使MA⊥MB?若存在,有幾個這樣的點,若不存在,請說明理由.

查看答案和解析>>

設拋物線C的方程為x2=4y,M為直線l:y=-m(m>0)上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(Ⅰ)當M的坐標為(0,-l)時,求過M,A,B三點的圓的標準方程,并判斷直線l與此圓的位置關(guān)系;
(Ⅱ)當m變化時,試探究直線l上是否存在點M,使MA⊥MB?若存在,有幾個這樣的點,若不存在,請說明理由.

查看答案和解析>>

斜率為k(k>0)的直線l過定點P(0,m)(m>0),與拋物線x2=2py(p>0)交于A,B兩點,且A,B兩點到y(tǒng)軸距離之差為4k.
(Ⅰ)求拋物線方程;
(Ⅱ)若此拋物線焦點為F,且有|AF|+|BF|=4k2+4,試求m的值;
(Ⅲ)過拋物線準線上任意一點Q作拋物線的兩條切線,切點分別為M,N,試探究直線MN是否過定點,若過定點,求出定點的坐標.

查看答案和解析>>

斜率為k(k>0)的直線l過定點P(0,m)(m>0),與拋物線x2=2py(p>0)交于A,B兩點,且A,B兩點到y(tǒng)軸距離之差為4k.
(Ⅰ)求拋物線方程;
(Ⅱ)若此拋物線焦點為F,且有|AF|+|BF|=4k2+4,試求m的值;
(Ⅲ)過拋物線準線上任意一點Q作拋物線的兩條切線,切點分別為M,N,試探究直線MN是否過定點,若過定點,求出定點的坐標.

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、

17、解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面邊長為2,高為4是,體積最大,最大體積為16

19、

略解、(1)因為f′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當a>0時,函數(shù)在f(x)在區(qū)間()上不存在零點

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        當x=1時,y=2n,可取格點2n個;當x=2時,y=n,可取格點n個

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)設,

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動點M的軌跡C是以O(0,0)為頂點,以(1,0)為焦點的拋物線(除去原點).

             …………………………………………5分

(Ⅱ)解法一:(1)當直線垂直于軸時,根據(jù)拋物線的對稱性,有

                                                         ……………6分

(2)當直線軸不垂直時,依題意,可設直線的方程為,則A,B兩點的坐標滿足方程組

消去并整理,得

,

.   ……………7分

設直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.

綜合(1)、(2)可知.                  …………………10分

解法二:依題意,設直線的方程為,,則A,B兩點的坐標滿足方程組:

消去并整理,得

,

. ……………7分

設直線AEBE的斜率分別為,則:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假設存在滿足條件的直線,其方程為,AD的中點為AD為直徑的圓相交于點F、GFG的中點為H,則點的坐標為.

,

,

 .                  …………………………12分

,

,得

此時,.

∴當,即時,(定值).

∴當時,滿足條件的直線存在,其方程為;當時,滿足條件的直線不存在.    

 


同步練習冊答案