(理)已知數(shù)列{an}的前n項和.且=1. 查看更多

 

題目列表(包括答案和解析)

 

(理)已知數(shù)列{an}的前n項和,且=1,

.

(I)求數(shù)列{an}的通項公式;

(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有

< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大。

(III)求證:≤bn<2.

(文)如圖,|AB|=2,O為AB中點,直線過B且垂直于AB,過A的動直線與交于點C,點M在線段AC上,滿足=.

(I)求點M的軌跡方程;

(II)若過B點且斜率為- 的直線與軌跡M交于

         點P,點Q(t,0)是x軸上任意一點,求當ΔBPQ為

         銳角三角形時t的取值范圍.

 

 

 

 

查看答案和解析>>

已知數(shù)列{an}的前n項和,且an是bn與1的等差中項.
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)若,求c2+c3+c4+…+cn;
(3)若,是否存在n∈N*使得f(n+11)=2f(n),并說明理由.

查看答案和解析>>

已知數(shù)列{an}的前n項和數(shù)學公式,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)令bn=lnan,是否存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比數(shù)列.若存在,求出所有符合條件的k值;若不存在,請說明理由.

查看答案和解析>>

已知數(shù)列{an}的前n項和,且an是bn和1的等差中項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)若,求
(3)若是否存在n∈N*,使f(n+11)=2f(n)?說明理由.

查看答案和解析>>

已知數(shù)列{an}的前n項和,且an是bn與1的等差中項.
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)令,求數(shù)列{Cn}的前n項和Tn;
(3)若(k∈N*),是否存在n∈N*,使得f(n+13)=2f(n),并說明理由.

查看答案和解析>>

一、選擇題(12’×5=60’)

1.C

2.理D  文D

3.D

4.C. 提示:{f(n)}是等差數(shù)列(n∈N*)

5.A. 提示:當S1=S2=S3=S4=S時,λ=4;當高趨向于零時,λ無限接近2

6.A

7.A

8.D

9.B. 提示:∵|PF1|+|PF2|=2,|PF1|-|PF2|=±2,又m-1=n+1,

∴|PF1|2+|PF2|2=2(m+n)=4(m-1)=|F1F2|2

10.C

11.D

12.D. 提示:第一行C22,第二行C31+C32=C42,第三行C41+C42=C52,…,故S19=C22+C42+C52+…+C122=C133-C32=283.

 

二、填空題(4’×4=16’)

13.y=-

14.答案:相反數(shù)的相反數(shù)是它本身,集合A的補集的補集是它本身,一個復數(shù)的共軛的共軛是它本身,等等.

15.nn

16.4或6或7或8

 

三、解答題

17.解:(1) y=sin2ωx+ cos2ωx+ = sin(2ωx+ )+                   (4)

∵ T=             ∴ ω =2                                 (6)      

 (2) y=sin(4x+ )+  

∵  0≤x≤    ∴ ≤4x+ ≤π +                          (8)

∴  當x= 時,y=0  當x=時,y=                              (12)

 

18.(1)質點n次移動看作n次獨立重復試驗,記向左移動一次為事件A,

則P(A)=,P(6ec8aac122bd4f6e)=3秒后,質點A在點x=1處的概率P1=P3(1)=C31?p(1-p)2=3××()2=              (6’)

    (2)2秒后,質點A、B同在x=2處,即A、B兩質點各做二次移動,其中質點A向右移動2次,質點B向左、向右各移動一次,故P2=P2(0)?P2(1)=C20?()2?C21??=          (12’)

考點解析:本題考查n次獨立重復試驗及獨立事件同時發(fā)生的概率,但需要一定的分析、轉化能力.

6ec8aac122bd4f6e
 

19.(1)∵AA1⊥面ABCD,∴AA1⊥BD,

又BD⊥AD,∴BD⊥A1D        (2’)

又A1D⊥BE,

∴A1D⊥平面BDE                (3’)

(2)連B1C,則B1C⊥BE,易證RtΔCBE∽RtΔCBB1,

∴=,又E為CC1中點,∴BB12=BC2=a2,

∴BB1=a          (5’)

取CD中點M,連BM,則BM⊥平面CD1,作MN⊥DE于N,連NB,則∠BNM是二面角B?DE?C的平面角                (7’)

RtΔCED中,易求得MN=,RtΔBMN中,tan∠BNM==,∴∠BNM=arctan (10’)

(3)易證BN長就是點B到平面A1DE的距離    (11’)

BN==a        (12’)

    (2)另解:以D為坐標原點,DA為x軸、DB為y軸、DD1為z軸建立空間直角坐標系

則B(0,a,0),設A1(a,0,x),E(-a,a,),6ec8aac122bd4f6e=(-a,0,-x),6ec8aac122bd4f6e=(-a,0,),∵A1D⊥BE

∴a2-x2=0,x2=2a2,x=a,即BB1=a.

考點解析:九(A)、九(B)合用一道立體幾何題是近年立幾出題的趨勢,相比較而言,選用九(B)體系可以避開一些邏輯論證,取之以代數(shù)運算,可以減輕多數(shù)學生學習立體幾何的學習壓力.

 

20.若按方案1付款,設每次付款為a(萬元)

則有a+a(1+0.8%)4+a(1+-0.8%)8=10×(1+0.8%)12        (4’)

即a×=10×1.00812,a=

付款總數(shù)S1=3a=9.9×1.00812                       (6’)

若按方案2付款,設每次付款額為b(萬元),同理可得:b=    (8’)

付款總額為S2=12b=9.6×1.00812,故按有二種方案付款總額較少.   (12’)

考點解析:復習中要注意以教材中研究性學習內容為背景的應用問題.

 

6ec8aac122bd4f6e21.(理)(1)設M(x,y),C(1,y0),∵=,∴=           (2’)

又A、M、C三點一線,∴=       ②                    (4’)

由(1)、(2)消去y0,得x2+4y2=1(y≠0)                          (6’)

   

      

 

(2)P(0,)是軌跡M短軸端點,∴t≥0時∠PQB或∠PBQ不為銳角,∴t<0

又∠QPB為銳角,∴6ec8aac122bd4f6e?6ec8aac122bd4f6e>0,∴(t,- )(1,- )=t+ >0,∴- <t<0         (12’)

考點解析:解析幾何題注意隱藏的三點共線關系;平面向量運算也常常設置在解析幾何考題當中.

 

21.(文)證明:(1) 設-1<x­1<x2<+∞

f(x1)-f(x2) =a-a + -

=a-a +          (4)

 ∵  -1<x1<x2 ,a>0

 ∴  a-a<0     <0

 ∴  f(x1)-f(x2)<0  即  f(x1)<f(x2) ,函數(shù)f(x)在(-1,+∞ )上為增函數(shù).       (6)

 (2)  若方程有負根x0 (x0≠-1),則有a= -1

   若  x0<-1 , -1<-1   而 a>0    故  a ≠ -1           (10)

   若 -1<x0<0 ,   -1>2    而 a<a0=1  a ≠ -1

綜上所述,方程f(x)=0沒有負根.  

                                                                          (12)

 

22.(理)(1)Sn=an,∴Sn+1=an+1,an+1=Sn+1-Sn=an+1-an,∴= (n≥2)         (2’)

∴==…==1,∴an+1=n,an=n-1 (n≥2),又a1=0,∴an=n-1                  (4’)

   (2)bn+1=(1+ )n+1,bn=(1+ )n,

∵<(n+1)?(1+ )n                                   (7’)

整理即得:(1+ )n<(1+ )n+1,即bn<bn+1                              (8’)

(3)由(2)知bn>bn-1­>…>b­1=                                               (10’)

又Cnr?()r=(??…)?()r≤()r,(0≤r≤n),

∴bn≤1+ +()2+…+()n=2-()n<2,∴≤bn<2                          (14’)

考點解析:這種“新概念”題需要較好的理解、分析能力,放縮法證明不等式是不等式證明的常用方法,也具有一定的靈活性,平時要注重概念的學習,常見題型的積累,提高思維能力和聯(lián)想變通能力.

22.(文)見21(理).

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案