例1.以橢圓的左焦點為極點.x軸的正向為極軸的正方向建立極坐標系.寫出此橢圓的極坐標方程 查看更多

 

題目列表(包括答案和解析)

已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.(1)求橢圓C的標準方程;

(2)若點P的坐標為(1,1),求證:直線PQ與圓相切;

(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

(14分)已知圓O:軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F,若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交直線x=-2于點Q.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓O相切;

(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),

直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

(14分)已知圓O:軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F,若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交直線x=-2于點Q.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓O相切;

(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),

直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

已知橢圓的中心在原點,焦點在x軸上,F(xiàn)1、F2分別為左、右焦點,橢圓的一個頂點與兩焦點構(gòu)成等邊三角形,且|
F1F2
|=2.
(1)求橢圓方程;
(2)對于x軸上的某一點T,過T作不與坐標軸平行的直線L交橢圓于P、Q兩點,若存在x軸上的點S,使得對符合條件的L恒有∠PST=∠QST成立,我們稱S為T的一個配對點,當T為左焦點時,求T 的配對點的坐標;
(3)在(2)條件下討論當T在何處時,存在有配對點?

查看答案和解析>>

設(shè)橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是過左焦點F且與x軸不垂直的弦,若在左準線l上存在點R,使△PQR為正三角形,則橢圓離心率e的取值范圍是
(
3
3
,1)
(
3
3
,1)

查看答案和解析>>


同步練習冊答案