(14分)已知圓O:交軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F,若P是圓O上一點(diǎn),連結(jié)PF,過(guò)原點(diǎn)O作直線PF的垂線交直線x=-2于點(diǎn)Q.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),
直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
(14分)解:(Ⅰ)因?yàn)?sub>,所以c=1,則b=1,
所以橢圓C的標(biāo)準(zhǔn)方程為 ………5分
(Ⅱ)∵P(1,1),∴,∴,∴直線OQ的方程為y=-2x, ∴點(diǎn)Q(-2,4)…7分
∴,又,∴,即OP⊥PQ,故直線PQ與圓O相切 ……10分
(Ⅲ)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),直線PQ與圓O保持相切 ………11分
證明:設(shè)(),則,所以,,
所以直線OQ的方程為 所以點(diǎn)Q(-2,) ………12分
所以,又 ……13分
所以,即OP⊥PQ,故直線PQ始終與圓O相切. ………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省煙臺(tái)市高三年級(jí)期末考試文科數(shù)學(xué) 題型:解答題
.(本小題滿分14分)
已知圓M:及定點(diǎn),點(diǎn)P是圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足
(1)求點(diǎn)G的軌跡C的方程;
(2)過(guò)點(diǎn)K(2,0)作直線與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)是否存在這樣的直線使四邊形OASB的對(duì)角線相等?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省09-10學(xué)年高一下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題
(本小題滿分14分)
已知圓C過(guò)點(diǎn)P(1,1)且與圓M:關(guān)于直線對(duì)稱
(1)求圓C的方程
(2)設(shè)為圓C上一個(gè)動(dòng)點(diǎn),求的最小值
(3)過(guò)點(diǎn)P作兩條相異直線分別與圓C相交于A、B兩點(diǎn),且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP與AB是否平行,并請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省高三上學(xué)期第三次月考數(shù)學(xué)理卷 題型:解答題
((12分)(本小題滿分14分)已知圓O:直線。
(I)求圓O上的點(diǎn)到直線的最小距離。
(II)設(shè)圓O與軸的兩交點(diǎn)是F1、F2,若從F1發(fā)出的光線經(jīng)上的點(diǎn)M反射后過(guò)點(diǎn)F2,求以F1、F2為焦點(diǎn)且經(jīng)過(guò)點(diǎn)M的橢圓方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)
已知圓O:交軸于A,B兩點(diǎn),曲線C是以為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過(guò)原點(diǎn)O作直線PF的垂線交直線X=-2于點(diǎn)Q.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;
(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(滿分14分).已知圓與直線相切。
求以圓O與y軸的交點(diǎn)為頂點(diǎn),直線在x軸上的截距為半長(zhǎng)軸長(zhǎng)的橢圓C方程;
已知點(diǎn)A,若直線與橢圓C有兩個(gè)不同的交點(diǎn)E,F,且直線AE的斜率與直線AF的斜率互為相反數(shù);問(wèn)直線的斜率是否為定值?若是求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com