(2)由已知令=0 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=x2+ax-lnx,a∈R;

(1)若函數f(x)在[1,2]上是減函數,求實數a的取值范圍;

(2)令g(x)=f(x)-x2,是否存在實數a,當x∈(0,e](e是自然對數的底數)時,函數g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

 

查看答案和解析>>

已知數列{an}有a1=a,a2=p(常數p>0),對任意的正整數n,Sn=a1+a2+…+an,并有Sn滿足

(Ⅰ)求a的值并證明數列{an}為等差數列;

(Ⅱ)令,是否存在正整數M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值,若不存在,說明理由.

查看答案和解析>>

已知函數f(x)=x2-(a+2)x+alnx.其中常數a>0,

(Ⅰ)當a>2時,求函數f(x)的單調遞增區(qū)間;

(Ⅱ)當a=4時,給出兩類直線:6x+y+m=0與3x-y+n=0,其中m,n為常數,判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出相應的m或n的值,若不存在,說明理由.

(Ⅲ)設定義在D上函數y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),當x≠x0時,若在D內恒成立,則稱點P為函數y=h(x)的“類對稱點”.

令a=4,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標,若不存在,說明理由.

查看答案和解析>>

已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知函數y=x²-3x+c的圖像與x恰有兩個公共點,則c=

(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

【解析】若函數的圖象與軸恰有兩個公共點,則說明函數的兩個極值中有一個為0,函數的導數為,令,解得,可知當極大值為,極小值為.由,解得,由,解得,所以,選A.

 

查看答案和解析>>


同步練習冊答案