(Ⅰ)證明:平面, 查看更多

 

題目列表(包括答案和解析)

平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點(diǎn).
(1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達(dá)式并給出證明;
(2)求證:這n條直線把平面分成
n(n+1)2
+1
個(gè)區(qū)域.

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(Ⅰ)求證:
OA
OB

(Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過(guò)P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過(guò)原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn).
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

()(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長(zhǎng)都是地面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn)。   

(Ⅰ)求證:ACSD;

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說(shuō)明理由。

查看答案和解析>>

()選修4-1:幾何證明講

已知 ABC   中,AB=AC,  DABC外接圓劣弧上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至E。

(1)       求證:AD的延長(zhǎng)線平分CDE;

(2)       若BAC=30,ABC中BC邊上的高為2+,求ABC外接圓的面積。

查看答案和解析>>

 

一.選擇題   1-5   6-10   BCDCA  DAABC 

二.填空題   11. ;  12. 2 ; 13. 2236 ;   14. ;  

 15.

三、解答題

16.【解】(Ⅰ)由整理得

,------2分

,      -------5分

,∴。                  -------7分

(Ⅱ)∵,∴最長(zhǎng)邊為,              --------8分

,∴,              --------10分

為最小邊,由余弦定理得,解得

,即最小邊長(zhǎng)為1                      --------13分

 

17.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號(hào)的紅鯽魚(yú)與中國(guó)金魚(yú)數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)目相同,設(shè)池塘中兩種魚(yú)的總數(shù)是,則有

,                                      ------------4分

即   ,                      

所以,可估計(jì)水庫(kù)中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)量均為25000.    ------------7分

(Ⅱ)顯然,,                                 -----------9分

其分布列為

0

1

2

3

4

5

---------11分

數(shù)學(xué)期望.                                  -----------13分

 

18.【解】(Ⅰ)∵,∴,--------2分

    要使有極值,則方程有兩個(gè)實(shí)數(shù)解,

    從而△=,∴.                        ------------4分

(Ⅱ)∵處取得極值,

    ∴

.                                          ------------6分

,

∴當(dāng)時(shí),,函數(shù)單調(diào)遞增,

當(dāng)時(shí),,函數(shù)單調(diào)遞減.

時(shí),處取得最大值,       ------------10分

時(shí),恒成立,

,即,

,即的取值范圍是.------------13分

 

19.【解】法一:(Ⅰ)∵,∴

∵三棱柱中,平面

,∴平面

平面,∴,而,則.---------2分

中,,--------4分

.∴.即

,∴平面.                --------------6分

(Ⅱ)如圖,設(shè),過(guò)的垂線,垂足為,連,平面,為二面角的平面角.        ----------------9分

中,,,

,∴;

中,,,

,

.------------11分

∴在中,,

故銳二面角的余弦值為.

即平面與平面所成的銳二面角的余弦值為. ----------13分

法二:(Ⅰ)∵,∴

∵三棱柱中平面

,∴平面

為坐標(biāo)原點(diǎn),、、所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系.---------------------2分

易求得,,,,.-----4分

(Ⅰ),

,,

,即,

,∴平面.                    ---------------------6分

(Ⅱ)設(shè)是平面的法向量,由

,則是平面的一個(gè)法向量.          --------------------9分

是平面的一個(gè)法向量,          -----------------11分

即平面與平面所成的銳二面角的余弦值為.----------13分

 

20.【解】(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為,

整理得 . ①    ---------------------2分

    設(shè)是方程①的兩個(gè)不同的根,

    ∴,   ②                  ----------------4分

    且,由是線段的中點(diǎn),得

    ,∴

    解得,代入②得,的取值范圍是(12,+∞).  --------------6分

    于是,直線的方程為,即      --------------7分

    法2:設(shè),,則有

          --------2分

    依題意,,∴.                ---------------------4分

的中點(diǎn),

,從而

又由在橢圓內(nèi),∴

的取值范圍是.                           ----------------6分

直線的方程為,即.        ----------------7分

(Ⅱ)∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③          -----------------9分

又設(shè),的中點(diǎn)為,則是方程③的兩根,

.-----12分

到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:.-----------14分

 

21.【解】(Ⅰ)由求導(dǎo)得,

∴曲線在點(diǎn)處的切線方程為,即

此切線與軸的交點(diǎn)的坐標(biāo)為,

∴點(diǎn)的坐標(biāo)為.即.                -------------------2分

∵點(diǎn)的坐標(biāo)為),在曲線上,所以,

∴曲線在點(diǎn)處的切線方程為,---4分

,得點(diǎn)的橫坐標(biāo)為

∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列.

).                                  ---------------------6分

(Ⅱ)設(shè)、、,

  --------9分==(定值)--------11分

 

(Ⅲ)設(shè)、

=

=

  --------13分

,

為常數(shù),∴=為定值. -----------14分

 


同步練習(xí)冊(cè)答案