(2)在線段上是否存在一點.使//平面. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,已知圓心在第二象限,半徑為2
2
的圓C與直線y=x相切于坐標(biāo)原點O.橢圓
x2
a2
+
y2
9
=1與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)試探求C上是否存在異于原點的點Q,使Q到橢圓右焦點F的距離等于線段OF的長.若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知點A(-1,-2),B(2,3),C(-2,-1).
(1)求以線段AB,AC為鄰邊的平行四邊形的兩條對角線的長;
(2)在直線OC上是否存在一點P,使(
AB
-
OP
)•
OC
=0
?若存在求出P點坐標(biāo),若不存在請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,定義以原點為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的“準(zhǔn)圓”.已知橢圓C:
x2
a2
+
y2
b2
=1
的離心率為
3
3
,直線l:2x-y+5=0與橢圓C的“準(zhǔn)圓”相切.
(1)求橢圓C的方程;
(2)P為橢圓C的右準(zhǔn)線上一點,過點P作橢圓C的“準(zhǔn)圓”的切線段PQ,點F為橢圓C的右焦點,求證:|PQ|=|PF|
(3)過點M(-
6
5
,0)
的直線與橢圓C交于A,B兩點,為Q橢圓C的左頂點,是否存在直線l使得△QAB為直角三角形?

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,橢圓C為
x2
4
+y2=1
(1)若一直線與橢圓C交于兩不同點M、N,且線段MN恰以點(-1,
1
4
)為中點,求直線MN的方程;
(2)若過點A(1,0)的直線l(非x軸)與橢圓C相交于兩個不同點P、Q試問在x軸上是否存在定點E(m,0),使
PE
QE
恒為定值λ?若存在,求出點E的坐標(biāo)及實數(shù)λ的值;若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知兩點M(1,—3)、N(5,1),若動點C滿足交于A、B兩點。

   (I)求證:;

(2)在x軸上是否存在一點,使得過點P的直線l交拋物線于D、E兩點,并以線段DE為直徑的圓都過原點。若存在,請求出m的值,若不存在,請說明理由。

查看答案和解析>>

                     

一、選擇題:本大題主要考查基本知識和基本運算.共12小題,每小題5分,滿分60分.

    題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

B

A

B

C

D

C

B

D

C

C

二、填空題:本大題主要考查基本知識和基本運算.本大題共4小題,每小題4分,滿分16

分.13.      14.    15.     16.

三、解答題:本大題共6小題,滿分74分.解答須寫出文字說明、證明過程和演算步驟.

17.(本小題滿分12分)          

解:(1)∵

                                        …… 2分

                                   …… 4分       

             .                                  …… 6分

.                                             …… 8分

(2) 當(dāng)時, 取得最大值, 其值為2 .               ……10分

此時,即Z.                 ……12分

18. (本小題滿分12分)

解:(1) 由頻率分布條形圖知,抽取的學(xué)生總數(shù)為人.         ……4分   

∵各班被抽取的學(xué)生人數(shù)成等差數(shù)列,設(shè)其公差為,

=100,解得.

∴各班被抽取的學(xué)生人數(shù)分別是22人,24人,26人,28人.     ……8分

(2) 在抽取的學(xué)生中,任取一名學(xué)生, 則分?jǐn)?shù)不小于90分的概率為0.35+0.25+0.1+0.05=0.75.……12分

19.(本小題滿分14分)解:(1)∵ ⊥平面平面,     

.                                                …… 2分   

,

⊥平面,                                        …… 4分

平面,∴ .                                    …… 6分

(2)法1: 取線段的中點,的中點,連結(jié),

是△中位線.

,               ……8分

,

.

∴ 四邊形是平行四邊形,            ……10分

.

平面,平面,

∥平面.                                        

∴ 線段的中點是符合題意要求的點.                      ……12分

 法2: 取線段的中點,的中點,連結(jié),

是△的中位線.

,,                 

平面, 平面,

平面.                         …… 8分

,,

.∴ 四邊形是平行四邊形,             

平面,平面

∥平面.                                        ……10分

,∴平面平面.∵平面,

∥平面.                                         

∴ 線段的中點是符合題意要求的點.                     ……12分

20、(本小題滿分12分)

解:解:(1)

    ①式 …………1分

  …………3分

由條件   ②式…………5分

由①②式解得

(2)

  …………8分

經(jīng)檢驗知函數(shù),

的取值范圍。 …………12分

21. (本小題滿分12分)

(1) 解:當(dāng)時,.                                        ……1分

   當(dāng)時,

.                                        ……3分

不適合上式,

                                       ……4分

(2)證明: ∵.

當(dāng)時,                                         ……6分

當(dāng)時,,          ①

.   ②

①-②得:

                

,                             ……8分

此式當(dāng)時也適合.

N.                                            ∵,∴.                                 ……10分

當(dāng)時,,

.                                     ∵,∴.           故,即.

綜上,.                              ……12分

22. (本小題滿分14分)

解:(1)依題意知,                                      …… 2分           

    ∵,.                            …… 4分

∴所求橢圓的方程為.                               …… 6分

(2)∵ 點關(guān)于直線的對稱點為

                                       …… 8分

解得:,.                            …… 10分

 

.                                              …… 12分

∵ 點在橢圓:上,∴, 則.

的取值范圍為.                                ……14分

 

 

 

 

 


同步練習(xí)冊答案