如果隨機(jī)變量服從幾何分布..則.D =其中q=1-p. 查看更多

 

題目列表(包括答案和解析)

若隨機(jī)變量ξ服從幾何分布,且p(ξ=k)=g(k,p)(0<p<1),試寫(xiě)出隨機(jī)變量ξ的期望公式,并給出證明.

查看答案和解析>>

已知正態(tài)分布N(μ,σ2)的密度曲線是f(x)=
1
σ
e-
(x-μ)2
2σ2
,給出以下四個(gè)命題:
①對(duì)任意x∈R,f(μ+x)=f(μ-x)成立;
②如果隨機(jī)變量ξ服從N(μ,σ2),且F(x)=P(ξ<x),那么F(x)是R上的增函數(shù);
③如果隨機(jī)變量ξ服從N(108,100),那么ξ的期望是108,標(biāo)準(zhǔn)差是100;
④隨機(jī)變量ξ服從N(μ,σ2),P(ξ<1)=
1
2
,P(ξ>2)=p,則P(0<ξ<2)=1-2p;其中,真命題的序號(hào)是
 
.(寫(xiě)出所有真命題序號(hào))

查看答案和解析>>

已知正態(tài)分布N(μ,σ2)的密度曲線是,給出以下四個(gè)命題:
①對(duì)任意x∈R,f(μ+x)=f(μ-x)成立;
②如果隨機(jī)變量ξ服從N(μ,σ2),且F(x)=P(ξ<x),那么F(x)是R上的增函數(shù);
③如果隨機(jī)變量ξ服從N(108,100),那么ξ的期望是108,標(biāo)準(zhǔn)差是100;
④隨機(jī)變量ξ服從N(μ,σ2),,P(ξ>2)=p,則P(0<ξ<2)=1-2p;其中,真命題的序號(hào)是    .(寫(xiě)出所有真命題序號(hào))

查看答案和解析>>

如果隨機(jī)變量X的分布列由下表給出,它服從兩點(diǎn)分布嗎?

查看答案和解析>>

已知正態(tài)分布的密度曲線是,給出以下四個(gè)命題:

①對(duì)任意成立;

②如果隨機(jī)變量服從,且,那么是R上的增函數(shù);

③如果隨機(jī)變量服從,那么的期望是108,標(biāo)準(zhǔn)差是100;

④隨機(jī)變量服從,,,則;其中,真命題的序號(hào)是   ________   .(寫(xiě)出所有真命題序號(hào))

查看答案和解析>>

一、1.D 2. B 3.A  4.D  5. D  6.  A  7.  B  8.  C  9.  D  10.  C   11.  C  12 A 13. 提示:此題為抽樣方法的選取問(wèn)題.當(dāng)總體中個(gè)體較多時(shí)宜采用系統(tǒng)抽樣;當(dāng)總體中的個(gè)體差異較大時(shí),宜采用分層抽樣;當(dāng)總體中個(gè)體較少時(shí),宜采用隨機(jī)抽樣.

依據(jù)題意,第①項(xiàng)調(diào)查應(yīng)采用分層抽樣法、第②項(xiàng)調(diào)查應(yīng)采用簡(jiǎn)單隨機(jī)抽樣法.故選B.

答案:B

  • 1,3,5

    答案:B

    二. 15. 37  ; 16.  ; 17.甲 ; 18.5600;

    19. 提示:此問(wèn)題總體中個(gè)體的個(gè)數(shù)較多,因此采用系統(tǒng)抽樣.按題目中要求的規(guī)則抽取即可.

    m=6,k=7,m+k=13,∴在第7小組中抽取的號(hào)碼是63.

    答案:63

    20.提示:不妨設(shè)在第1組中隨機(jī)抽到的號(hào)碼為x,則在第16組中應(yīng)抽出的號(hào)碼為120+x.

    設(shè)第1組抽出的號(hào)碼為x,則第16組應(yīng)抽出的號(hào)碼是8×15+x=126,∴x=6.

    答案:6

    三.21.解 分層抽樣應(yīng)按各層所占的比例從總體中抽取.

    ∵120∶16∶24=15∶2∶3,又共抽出20人,

    ∴各層抽取人數(shù)分別為20×=15人,20×=2人,20×=3人.

    答案:15人、2人、3人.

    22. 解:(1)  ;  ;;.

    的概率分布如下表

    0

    1

    2

    3

    P

    (2)乙至多擊中目標(biāo)2次的概率為.

    <ol id="m9pob"><label id="m9pob"><input id="m9pob"></input></label></ol>
  • <form id="m9pob"><acronym id="m9pob"></acronym></form>

      1,3,5

      所以甲恰好比乙多擊中目標(biāo)2次的概率為

       


      同步練習(xí)冊(cè)答案

      <form id="m9pob"></form>