所以,存在這樣的點(diǎn)P,其坐標(biāo)為.高二年級(jí)數(shù)學(xué)答題紙題號(hào)12345678910答案 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,M、N、P分別是正方體ABCD-A1B1C1D1的棱AB、BC、DD1上的點(diǎn).
(1)若
BM
MA
=
BN
NC
,求證:無(wú)論點(diǎn)P在D1D上如何移動(dòng),總有BP⊥MN;
(2)若D1P:PD=1:2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值;
(3)棱DD1上是否總存在這樣的點(diǎn)P,使得平面APC1⊥平面ACC1?證明你的結(jié)論.

查看答案和解析>>

(2013•青島一模)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足:△ABC的周長(zhǎng)為2+2
2
,記動(dòng)點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)曲線W上是否存在這樣的點(diǎn)P:它到直線x=-1的距離恰好等于它到點(diǎn)B的距離?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)設(shè)E曲線W上的一動(dòng)點(diǎn),M(0,m),(m>0),求E和M兩點(diǎn)之間的最大距離.

查看答案和解析>>

已知F1、F2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn),A(0,b),連接AF1并延長(zhǎng)交橢圓C于B點(diǎn),若
AF1
=
3
2
F1B
,
AB
AF2
=5

(1)求橢圓C的方程;
(2)設(shè)P是直線x=5上的一點(diǎn),直線PF2交橢圓C于D、E兩點(diǎn),是否存在這樣的點(diǎn)P,使得
AD
AE
?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥y軸交直線BC于點(diǎn)Q.
①當(dāng)x取何值時(shí),線段PQ的長(zhǎng)度取得最大值,其最大值是多少?
②是否存在這樣的點(diǎn)P,使∠OQA為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個(gè)不同的點(diǎn)(n∈N*,k、b均為非零常數(shù)),其中數(shù)列{xn}為等差數(shù)列.
(1)求證:數(shù)列{yn}是等差數(shù)列;
(2)若點(diǎn)P是直線l上一點(diǎn),且
OP
=a1
OA1
+a2
OA2
,求證:a1+a2=1;
(3)設(shè)a1+a2+…+an=1,且當(dāng)i+j=n+1時(shí),恒有ai=aj(i和j都是不大于n的正整數(shù),且i≠j).試探索:在直線l上是否存在這樣的點(diǎn)P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案