過點T(2.0)的直線交拋物線y2=4x于A.B兩點. 查看更多

 

題目列表(包括答案和解析)

過點T(2,0)的直線交拋物線y2=4xA、B兩點.

   (I)若直線l交y軸于點M,且當(dāng)m變化時,求的值;

   (II)設(shè)A、B在直線上的射影為DE,連結(jié)AE、BD相交于一點N,則當(dāng)m變化時,點N為定點的充要條件是n=-2.

查看答案和解析>>

過點T(2,0)的直線交拋物線y2=4xA、B兩點.
(I)若直線l交y軸于點M,且當(dāng)m變化時,求的值;
(II)設(shè)A、B在直線上的射影為D、E,連結(jié)AE、BD相交于一點N,則當(dāng)m變化時,點N為定點的充要條件是n=-2.

查看答案和解析>>

 直線與拋物線相交于A,B兩點,F(xiàn)是拋物線的焦點。

(1)求證:“如果直線過點T(3,0),那么”是真命題

(2)設(shè)是拋物線上三點,且成等差數(shù)列。當(dāng)AD的垂直平分線與軸交于點T(3,0)時,求點B的坐標(biāo)。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

直線l與拋物線相交于A,B兩點,F(xiàn)是拋物線的焦點.
(1)求證:“如果直線l過點T(3,0),那么
OA
OB
=-3
”是真命題
(2)設(shè)A(x1,y1),B(x2,y2),D(x3,y3)是拋物線上三點,且|AF|,|BF|,|DF|成等差數(shù)列.當(dāng)AD的垂直平分線與x軸交于點T(3,0)時,求點B的坐標(biāo).

查看答案和解析>>

設(shè)拋物線C:x2=2py(p>0),過它的焦點F且斜率為1的直線與拋物線C相交于A,B兩點,已知|AB|=2.
(1)求拋物線C的方程;
(2)已知t是一個負(fù)實數(shù),P是直線y=t上一點,過P作直線l1與l2,使l1⊥l2,若對任意的點P,總存在這樣的直線l1與l2,使l1,l2與拋物線均有公共點,求t的取值范圍.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解:以DA,DC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖).

    <pre id="9tfay"></pre>

           P(0,0,a),F,,).………………2分

       (I)

           …………………………………………4分

    文本框:     (II)設(shè)平面DEF的法向量為

           得

           取x=1,則y=-2,z=1.

           ………………………………………………6分

          

           設(shè)DB與平面DEF所成角為……………………………………8分

       (III)假設(shè)存在點G滿足題意

           因為

          

           ∴存在點G,其坐標(biāo)為(,0,0),即G點為AD的中點.……………………12分

    19.(本小題滿分12分)

           解:(I)ξ的所有可能取值為0,1,2,依題意得:

           …………3分

           ∴ξ的分布列為

          

    ξ

    0

    1

    2

    P

           ∴Eξ=0×+1×+2×=1.…………………………………………4分

       (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

           ∴所求概率為…………………………………8分

       (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

           ………………………………10分

           ……………12分

    20.(本小題滿分12分)

           解:(I)由題意知

           是等差數(shù)列.…………………………………………2分

          

           ………………………………5分

       (II)由題設(shè)知

          

           是等差數(shù)列.…………………………………………………………8分

          

           ………………………………10分

           ∴當(dāng)n=1時,

           當(dāng)

           經(jīng)驗證n=1時也適合上式. …………………………12分

    21.(本小題滿分12分)

           解:(I)令

           則

           是單調(diào)遞減函數(shù).……………………………………2分

           又取

           在其定義域上有唯一實根.……………………………4分

       (II)由(I)知方程有實根(或者由,易知x=0就是方程的一個根),滿足條件①.………………………………………………5分

          

           滿足條件②.故是集合M中的元素.……………………………7分

       (III)不妨設(shè)在其定義域上是增函數(shù).

           ………………………………………………………………8分

           是其定義域上的減函數(shù).

           .………………10分

          

           …………………………………………12分

    22.(本小題滿分14分)

           解:(I)設(shè)

           由

           ………………………………………………2分

           又

          

           同理,由………………………………4分

           …………6分

       (II)方法一:當(dāng)m=0時,A(2,2),B(2,-),Dn,2),En,-2).

           ∵ABED為矩形,∴直線AE、BD的交點N的坐標(biāo)為(………………8分

           當(dāng)

          

           同理,對、進(jìn)行類似計算也得(*)式.………………………………12分

           即n=-2時,N為定點(0,0).

           反之,當(dāng)N為定點,則由(*)式等于0,得n=-2.…………………………14分

           方法二:首先n=-2時,則D(-2,y1),A

             ①

             ②…………………………………………8分

           ①-②得

          

           …………………………………………………………10分

           反之,若N為定點N(0,0),設(shè)此時

           則

           由D、N、B三點共線,   ③

           同理E、N、A三點共線, ④………………12分

           ③+④得

           即-16m+8m4m=0,m(n+2)=0.

           故對任意的m都有n=-2.……………………………………………………14分

     

     

     


    同步練習(xí)冊答案