解法二:(Ⅰ)建立如圖所示的空間直角坐標系又PA=AD=2.則有P ----- 查看更多

 

題目列表(包括答案和解析)

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點,,

(1)求證:平面

(2)求二面角的大。

【解析】第一問利用線面垂直的判定定理和建立空間直角坐標系得到法向量來表示二面角的。

第二問中,以A為原點,如圖所示建立直角坐標系

,,

設平面FAE法向量為,則

,,

 

查看答案和解析>>

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:平面

(Ⅲ)求二面角的大小.

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面,又,∴平面. 可得證明

(3)因為∴為面的法向量.∵,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點、

,又點,,∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵,

,,即,,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵,

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>


同步練習冊答案