略解(Ⅰ)證明: 查看更多

 

題目列表(包括答案和解析)

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

(2)當時,若,

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

,

.

,,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設

分別過作拋物線準線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數(shù),關于軸對稱”,即:

“當時,若,且點與點為偶數(shù),關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù),,及任意的,當甲公司投入萬元作宣傳時,乙公司投入的宣傳費若小于萬元,則乙公司有失敗的危險,否則無失敗的危險;當乙公司投入萬元作宣傳時,甲公司投入的宣傳費若小于萬元,則甲公司有失敗的危險,否則無失敗的危險. 設甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標系,試回答以下問題:

(1)請解釋;

(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應投入多少宣傳費?

(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據(jù)對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入萬元,乙在上述策略下,投入最少費用;而甲根據(jù)乙的情況,調整宣傳費為;同樣,乙再根據(jù)甲的情況,調整宣傳費為如此得當甲調整宣傳費為時,乙調整宣傳費為;試問是否存在,的值,若存在寫出此極限值(不必證明),若不存在,說明理由.

查看答案和解析>>

甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù),,及任意的,當甲公司投入萬元作宣傳時,乙公司投入的宣傳費若小于萬元,則乙公司有失敗的危險,否則無失敗的危險;當乙公司投入萬元作宣傳時,甲公司投入的宣傳費若小于萬元,則甲公司有失敗的危險,否則無失敗的危險. 設甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標系,試回答以下問題:
(1)請解釋;
(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應投入多少宣傳費?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據(jù)對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入萬元,乙在上述策略下,投入最少費用;而甲根據(jù)乙的情況,調整宣傳費為;同樣,乙再根據(jù)甲的情況,調整宣傳費為如此得當甲調整宣傳費為時,乙調整宣傳費為;試問是否存在,的值,若存在寫出此極限值(不必證明),若不存在,說明理由.

查看答案和解析>>

甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù),,及任意的,當甲公司投入萬元作宣傳時,乙公司投入的宣傳費若小于萬元,則乙公司有失敗的危險,否則無失敗的危險;當乙公司投入萬元作宣傳時,甲公司投入的宣傳費若小于萬元,則甲公司有失敗的危險,否則無失敗的危險. 設甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標系,試回答以下問題:

(1)請解釋;w.w.w.k.s.5.u.c.o.m

(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應投入多少宣傳費?

(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據(jù)對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入萬元,乙在上述策略下,投入最少費用;而甲根據(jù)乙的情況,調整宣傳費為;同樣,乙再根據(jù)甲的情況,調整宣傳費為如此得當甲調整宣傳費為時,乙調整宣傳費為;試問是否存在,的值,若存在寫出此極限值(不必證明),若不存在,說明理由.

查看答案和解析>>


同步練習冊答案