甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對(duì)于函數(shù),及任意的,當(dāng)甲公司投入萬元作宣傳時(shí),乙公司投入的宣傳費(fèi)若小于萬元,則乙公司有失敗的危險(xiǎn),否則無失敗的危險(xiǎn);當(dāng)乙公司投入萬元作宣傳時(shí),甲公司投入的宣傳費(fèi)若小于萬元,則甲公司有失敗的危險(xiǎn),否則無失敗的危險(xiǎn). 設(shè)甲公司投入宣傳費(fèi)x萬元,乙公司投入宣傳費(fèi)y萬元,建立如圖直角坐標(biāo)系,試回答以下問題:
(1)請(qǐng)解釋;
(2)甲、乙兩公司在均無失敗危險(xiǎn)的情況下盡可能少地投入宣傳費(fèi)用,問此時(shí)各應(yīng)投入多少宣傳費(fèi)?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險(xiǎn),根據(jù)對(duì)方所投入的宣傳費(fèi),按最少投入費(fèi)用原則,投入自己的宣傳費(fèi):若甲先投入萬元,乙在上述策略下,投入最少費(fèi)用;而甲根據(jù)乙的情況,調(diào)整宣傳費(fèi)為;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費(fèi)為如此得當(dāng)甲調(diào)整宣傳費(fèi)為時(shí),乙調(diào)整宣傳費(fèi)為;試問是否存在,的值,若存在寫出此極限值(不必證明),若不存在,說明理由.
=8, =12,⑵甲公司至少投入17萬元,乙公司至少投入25萬元.⑶點(diǎn)M (17, 25) 是雙方在宣傳投入上保證自己不失敗的一個(gè)平衡點(diǎn).
(1)表示當(dāng)甲公司不投入宣傳費(fèi)時(shí),乙公司要回避失敗風(fēng)險(xiǎn),至少要投入=8萬元;         …………………… (2分)
表示當(dāng)乙公司不投入宣傳費(fèi)時(shí), 甲公司要回避失敗風(fēng)險(xiǎn),至少要投入  =12萬元.             …………………………… (4分)
(2) 解方程組
    ………………(6分)
得:  x =" 17," y =" 25 " ……………(9分)  
故甲公司至少投入17萬元,乙公司至少投入25萬元. …… (11分)
(3) 經(jīng)觀察, 顯見 .
故點(diǎn)M (17, 25) 是雙方在宣傳投入上保證自己不失敗的一個(gè)平衡點(diǎn). ………(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(a,O)( a >0),Bx軸負(fù)半軸上的動(dòng)點(diǎn).以AB為邊作菱形ABCD,使其兩對(duì)角線的交點(diǎn)恰好落在y軸上.
(I)求動(dòng)點(diǎn)D的軌跡E的方程;
(Ⅱ)過點(diǎn)A作直線l與軌跡E交于PQ兩點(diǎn),設(shè)點(diǎn)R (- a,0),問當(dāng)l繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),∠PRQ是否可以為鈍角?請(qǐng)給出結(jié)論,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市空調(diào)公共汽車的票價(jià)按下列規(guī)則制定:
(1)5公里以內(nèi),票價(jià)2元;
(2)5公里以上,每增加5公里,票價(jià)增加1元(不足5公里的按5公里算).
已知兩個(gè)相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點(diǎn)和終點(diǎn)站)有21個(gè)汽車站,請(qǐng)根據(jù)題意,寫出票價(jià)與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)滿足對(duì)任意的都有成立,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

規(guī)定一種運(yùn)算:,例如:12=1,32=2,則函數(shù)的值域?yàn)?u>                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 的圖象在處的切線互相平行.
(Ⅰ) 求的值;
(Ⅱ)設(shè),當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)= +lnx的圖像在點(diǎn)P(m,f(m))處的切線方程為y="x" ,
設(shè)
(1)求證:當(dāng)恒成立;
(2)試討論關(guān)于的方程: 根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(1)求博物館支付總費(fèi)用y與保護(hù)罩容積V之間的函數(shù)關(guān)系式;
(2)求博物館支付總費(fèi)用的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是奇函數(shù),是偶函數(shù),并且,求

查看答案和解析>>

同步練習(xí)冊(cè)答案