(3)若.記().求數(shù)列的通項公式. 2009年浙江省嵊泗中學(xué)高三數(shù)學(xué)調(diào)測試卷 查看更多

 

題目列表(包括答案和解析)

(2009•成都二模)已知數(shù)列{an}中,a1=
2
3
,a2=
8
9
且當n≥2,n∈N時,3a n+1=4a-a n-1
(I)求數(shù)列{an}的通項公式;
(Ⅱ)記
n
i=1
ai=a1•a2•a3…an,n∈N*
(1)求極限
lim
n→∞
n
i=1
(2-2 i-1
(2)對一切正整數(shù)n,若不等式λ
n
i=1
ai>1(λ∈N*)恒成立,求λ的最小值.

查看答案和解析>>

(2009四川卷文)設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。                                       
(I)求數(shù)列與數(shù)列的通項公式;
(II)設(shè)數(shù)列的前項和為,是否存在正整數(shù),使得成立?若存在,找出一個正整數(shù);若不存在,請說明理由;
(III)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有

查看答案和解析>>

(2009•虹口區(qū)二模)數(shù)列{an}滿足a1=2,an+1=λan+2n(n∈N*),λ為非零常數(shù)
(1)是否存在實數(shù)λ,使得數(shù)列{an}成為等差數(shù)列或者成為等比數(shù)列,若存在則找出所有的λ,并求出對應(yīng)的通項公式;若不存在則說明理由;
(2)當λ=1時,記bn=an+
19
×2n,證明數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項公式.

查看答案和解析>>

(2009四川卷文)(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。                                       

(I)求數(shù)列與數(shù)列的通項公式;

(II)設(shè)數(shù)列的前項和為,是否存在正整數(shù),使得成立?若存在,找出一個正整數(shù);若不存在,請說明理由;

(III)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;

查看答案和解析>>

(2009•寶山區(qū)一模)已知數(shù)列{an}的前n項和為Sn,a1=1,3an+1+4Sn=3(n為正整數(shù)).
(1)求數(shù)列{an}的通項公式;
(2)記S=a1+a2+…+an+…,若對任意正整數(shù)n,kS<Sn恒成立,求k的取值范圍?
(3)已知集合A={x|x2+a≤(a+1)x,a>0},若以a為首項,a為公比的等比數(shù)列前n項和記為Tn,問是否存在實數(shù)a使得對于任意的n∈N*,均有Tn∈A.若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

一、選擇題      ACCBC  BBCCD

 

二、填空題:,,,,①②④

 

18(Ⅰ)由題意“”表示“答完題,第一題答對,第二題答錯;或第一題答對,第二題也答對” 此時概率                 …6分

(Ⅱ)P()==,    P()==,………9分

-3

-1

1

 

3

P()== ,     P()==

的分布列為 

                                                   12分

  ……14分                                               

19解:(Ⅰ) 連接于點,連接

中,分別為中點,

平面,平面,平面.   …………(6分)

  (Ⅱ) 法一:過,由三垂線定理得,

故∠為二面角的平面角.    ……………………………………(9分)

 令,則,又

  在中,,

   解得

時,二面角的正弦值為.     ………………(14分)

法二:設(shè),取中點,連接

為坐標原點建立空間直角坐標系,如右圖所示:

,

設(shè)平面的法向量為,平面的法向量為,

則有,,即,

設(shè),則,

,解得

即當時,二面角的正弦值為.  …………………(14分)

 

20.(1)   ;

(2)軌跡方程為

(1)當時,軌跡方程為),表示拋物線弧段。

(2)當時,軌跡方程為

    A)當表示橢圓弧段;      B)當時表示雙曲線弧段。

21.   Ⅰ)   …………(2分)

,則

時,;當

故有極大值…………(4分)

Ⅱ)∵=a+,x∈(0,e),∈[,+∞

   (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).

    ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………7分

   (2)若a<-, >0a+>0,即0<x<-

    由a+<0,即-<x≤e.

    ∴f(x)=f(-)=-1+ln(-).

    令-1+ln(-)=-3,則ln(-)=-2.∴-=e,

    即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………10分

   Ⅲ)由Ⅰ)結(jié)論,=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.

    令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-……12分

   (1)當0<x<2時,有g(shù)(x)≥x-(1+)(x-1)-=>0.

   (2)當x≥2時,g′(x)=1-[(-)lnx+(1+)?]=

                   =.

    ∴g(x)在[2,+∞上增函數(shù),∴g(x)≥g(2)=

    綜合(1)、(2)知,當x>0時,g(x)>0,即|f(x)|>.

    故原方程沒有實解.                       ………………………………16分

 

22.證明:(I)

    ①當,                       …………2分

②假設(shè)

時不等式也成立,                                                               …………4分

   (II)由,

                                                                                              …………5分

   

                …………7分

                            …………8分

   (III),

,                                             …………10分

的等比數(shù)列,…………12分

                                   …………14分

 

 


同步練習(xí)冊答案