∈(.+∞).也不合題意,---------------10分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,,上恒成立。因此上單調遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,,故上單調遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

設函數(shù)

(1)當時,求曲線處的切線方程;

(2)當時,求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數(shù)的正負確定單調性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當……2分

   

為所求切線方程。………………4分

(2)當

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調遞增。∴滿足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數(shù)的取值范圍是

 

查看答案和解析>>

如圖,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出、之間的等量關系,以及、之間的等量關系;

(2)求證:);

(3)設,對所有,恒成立,求實數(shù)的取值范圍.

【解析】第一問利用有得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,

第三問 

.………………………2分

因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及,

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有.    ……………………………1分

(3) 

.………………………2分

因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>


同步練習冊答案