兩式相減得.當(dāng)時(shí)..即. 查看更多

 

題目列表(包括答案和解析)

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡(jiǎn)單的圓冤啊位置關(guān)系的運(yùn)用

(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(I),,由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

已知數(shù)列{an}的通項(xiàng)為an=(2n-1)•2n,求其前n項(xiàng)和Sn時(shí),我們用錯(cuò)位相減法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
兩式相減得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.類比推廣以上方法,若數(shù)列{bn}的通項(xiàng)為bn=n2•2n,則其前n項(xiàng)和Tn=
(n2-2n+3)•2n+1-6
(n2-2n+3)•2n+1-6

查看答案和解析>>

【解析】本小題考查直線方程的求法。畫草圖,由對(duì)稱性可猜想

事實(shí)上,由截距式可得直線,直線,兩式相減得,顯然直線AB與CP的交點(diǎn)F滿足此方程,又原點(diǎn)O也滿足此方程,故為所求的直線OF的方程。

答案。

查看答案和解析>>

數(shù)列首項(xiàng),前項(xiàng)和滿足等式(常數(shù),……)

(1)求證:為等比數(shù)列;

(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項(xiàng)公式.

(3)設(shè),求數(shù)列的前項(xiàng)和.

【解析】第一問利用由

兩式相減得

時(shí),

從而  即,而

從而  故

第二問中,     又為等比數(shù)列,通項(xiàng)公式為

第三問中,

兩邊同乘以

利用錯(cuò)位相減法得到和。

(1)由

兩式相減得

時(shí),

從而   ………………3分

  即,而

從而  故

對(duì)任意,為常數(shù),即為等比數(shù)列………………5分

(2)    ……………………7分

為等比數(shù)列,通項(xiàng)公式為………………9分

(3)

兩邊同乘以

………………11分

兩式相減得

 

查看答案和解析>>

已知數(shù)列{an}的通項(xiàng)為an=(2n-1)•2n,求其前n項(xiàng)和Sn時(shí),我們用錯(cuò)位相減法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
兩式相減得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.類比推廣以上方法,若數(shù)列{bn}的通項(xiàng)為bn=n2•2n,則其前n項(xiàng)和Tn=   

查看答案和解析>>


同步練習(xí)冊(cè)答案