2.已知 查看更多

 

題目列表(包括答案和解析)

已知
(Ⅰ)若的表達式;
(Ⅱ)若函數(shù)f (x)和函數(shù)g(x)的圖象關于原點對稱,求函數(shù)g(x)的解析式;
(Ⅲ)若上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

已知(    )

  A.         B.-         C.         D.-

查看答案和解析>>

已知(  )

(A)      (B)      (C)       (D)

查看答案和解析>>

已知

   (Ⅰ)當有最小值為2時,求的值;

   (Ⅱ)當時,有恒成立,求實數(shù)的取值范圍

查看答案和解析>>

已知(    )

       A.-1     B.0       C.1       D.2

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時,

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

19.(本小題滿分12分)

解法一:

   (I)證明

如圖,連結AC,AC交BD于點G,連結EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.

又E為PC的中點,

∴EG//PA。

∵EG平面EDB,PA平面EDB,

∴PA//平面EDB   ………………4分

   (II)證明:

∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

又∵BC⊥DC,PD∩DC=D,

∴BC⊥平面PDC。

∴PC是PB在平面PDC內(nèi)的射影。

∵PD⊥DC,PD=DC,點E是PC的中點,

∴DE⊥PC。

由三垂線定理知,DE⊥PB。

∵DE⊥PB,EF⊥PB,DE∩EF=E,

∴PB⊥平面EFD。   …………………………8分

   (III)解:

∵PB⊥平面EFD,

∴PB⊥FD。

又∵EF⊥PB,F(xiàn)D∩EF=F,

∴∠EFD就是二面角C―PB―D的平面角。………………10分

∵PD=DC=BC=2,

∴PC=DB=

∵PD⊥DB,

由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

∴DE⊥平面PBC。

∵EF平面PBC,

∴DE⊥EF。

∴∠EFD=60°。

故所求二面角C―PB―D的大小為60°。  ………………12分

解法二:

如圖,以點D為坐標原點,DA、DC、DP所在直線分別為x軸、y軸、z軸,

建立空間直角坐標系,得以下各點坐標:D(0,0,0),A(2,0,0),B(2,2,0),

C(0,2,0),P(0,0,2)   ………………1分

   (I)證明:

連結AC,AC交BD于點G,連結EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.G點坐標為(1,1,0)。

              <menu id="ym7de"><sup id="ym7de"></sup></menu><tbody id="ym7de"><legend id="ym7de"></legend></tbody>
              <ol id="ym7de"></ol>
            1. <meter id="ym7de"></meter>

            2. 高考資源網(wǎng)www.ks5u.com

              ∴PA//平面EDB   ………………4分

                 (II)證明:

                 (III)解:

              ∵PB⊥平面EFD,

              ∴PB⊥FD。

              又∵EF⊥PB,F(xiàn)D∩EF=F,

              ∴∠EFD就是二面角C―PB―D的平面角!10分

              ∴∠EFD=60°。

              故所求二面角C―PB―D的大小為60°。  ………………12分

              20.(本小題滿分12分)

                 (I)解:

              設 “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,所以取出的4個球均為黑球的概率為

                 ………………2分

              依題設,

              故乙盒內(nèi)紅球的個數(shù)為2。  ……………………5分

              (II)解: 由(I)知

              ξ的分布列為

              ξ

              0

              1

              2

              3

              P

                                                                   ………………10分

               ………………12分

              21.(本小題滿分12分)

                 (I)解:由題意設雙曲線S的方程為   ………………2分

              c為它的半焦距,

                 (II)解:

              22.(本小題滿分12分)

                 (I)解:

                

                 (III)解:

                 (III)解:

               

               

              w.w.w.k.s.5.u.c.o.m

              www.ks5u.com


              同步練習冊答案