軸.點(diǎn)的縱坐標(biāo)也是. 查看更多

 

題目列表(包括答案和解析)

直線y=kx+b與直線y=
1
2
x+3
交點(diǎn)的縱坐標(biāo)為5,而與直線y=3x-9的交點(diǎn)的橫坐標(biāo)也是5,則直線y=kx+b與兩坐標(biāo)軸圍成的三角形面積為( 。

查看答案和解析>>

附加題:有一條直線y=kx+b,它與直線數(shù)學(xué)公式交點(diǎn)的縱坐標(biāo)為5,而與直線y=3x-9的交點(diǎn)的橫坐標(biāo)也是5.求該直線與兩坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

附加題:有一條直線y=kx+b,它與直線y=
12
x+3
交點(diǎn)的縱坐標(biāo)為5,而與直線y=3x-9的交點(diǎn)的橫坐標(biāo)也是5.求該直線與兩坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

當(dāng)拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:數(shù)學(xué)公式
當(dāng)m的值變化時,頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實(shí)數(shù)時,拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是______,其中運(yùn)用的公式是______.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是______.
②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實(shí)數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

已知:點(diǎn)A(2,a)在一次函數(shù)y=2x+3的圖象上,另有一直線也經(jīng)過A點(diǎn),且該直線與y軸交點(diǎn)的縱坐標(biāo)是5.(1)求這條直線的解析式.
(2)求以上兩條直線與x軸所圍成的三角形面積.

查看答案和解析>>


同步練習(xí)冊答案