D 提示:由前2項可設(shè)通項和.代入檢驗即可. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

已知數(shù)列{an}是等比數(shù)列,其首項a1=1,公比為2;數(shù)列{bn}是等差數(shù)列,其首項b1=1,公差為d,且其前n項的和Sn滿足S7=14S2;
(I)求數(shù)列{an+bn}的前n項的和Tn;
(II)在數(shù)列{an}(n=1,2,3,4)中任取一項ai,在數(shù)列{bn}(1,2,3,4)中任取一項bk,試求滿足ai2+bi2≤81的概率.

查看答案和解析>>

已知{an}是等差數(shù)列,公差d>0,前n項和為Sn且滿足a3•a4=117,a2+a5=22.對于數(shù)列{bn},其通項公式bn=
Sn
n+C
,如果數(shù)列{bn}也是等差數(shù)列.
(1)求非零常數(shù)C的值;      
(2)試求函數(shù)f(n)=
bn
(n+36)bn+1
(n∈N*)的最大值.

查看答案和解析>>

已知等差數(shù)列{an}的首項a1>0,公差d>0,前n項和為Sn,設(shè)m,n,p∈N*,且m+n=2p
(1)求證:Sn+Sm≥2Sp;
(2)求證:Sn•Sm≤(Sp2;
(3)若S1005=1,求證:
2009
n=1
1
Sn
≥2009

查看答案和解析>>

(1)已知:等差數(shù)列{an}的首項a1,公差d,證明數(shù)列前n項和Sn=na1+
n(n-1)
2
d

(2)已知:等比數(shù)列{an}的首項a1,公比q,則證明數(shù)列前n項和Sn=
a1(1-qn)
1-q
(q≠1)
na1(q=1)

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

5.B

6. D

解析:當(dāng)q=1時,Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-2時,Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-時,Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

當(dāng)時,是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1),

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

20.解:設(shè)未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

,

又設(shè)銷售利潤為數(shù)列,

當(dāng),

考察的單調(diào)性,

當(dāng)n=9或10時,最大

答:禮品價值為9元或10元時商品獲得最大利潤.

 

21.解析:(1)時,

兩式相減:

故有

數(shù)列為首項公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

當(dāng)n≤50時,

當(dāng)51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習(xí)冊答案