已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問(wèn)

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

【答案】

見(jiàn)解析

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前項(xiàng)和.

(1)求,

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省“十校”高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,, 為數(shù)列的前項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省汕頭市高二10月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前項(xiàng)和.

(1)求;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三4月教學(xué)質(zhì)量檢測(cè)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分。已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為為其前項(xiàng)和,且滿足

,.?dāng)?shù)列滿足為數(shù)列的前n項(xiàng)和.

(1)求、

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年深圳市高三第一次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分14分)

已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足

,.?dāng)?shù)列滿足為數(shù)列的前n項(xiàng)和.

(1)求、;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案