題目列表(包括答案和解析)
【練】
(1)(2005全國卷1)已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,斜率為1且過橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),與共線。(Ⅰ)求橢圓的離心率;(Ⅱ)設(shè)M為橢圓上任意一點(diǎn),且,證明為定值。
例
( 2005全國卷III)已知函數(shù),(Ⅰ)求的單調(diào)區(qū)間和值域;
(Ⅱ)設(shè),函數(shù),若對于任意,總存在使得成立,求的取值范圍。
()(2005 全國卷III)用長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖),問該容器的高為多少時,容器的容積最大?最大容積是多少?
【練40】(1)(2005全國卷Ⅲ)△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知a,b,c成等比數(shù)列,且cosB=。(1)求cotA+cotC的值;(2)設(shè),求的值。
(02年全國卷文)(本小題滿分12分,附加題滿分4分)
(I)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個三棱錐模型,另一塊剪拼成一個正三棱柱模型,使它們的全面積都與原三角形的面積相等,請設(shè)計一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡要說明;
(II)試比較你剪拼的正三棱錐與正三棱柱的體積的大。
(III)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)
如果給出的是一塊任意三角形的紙片(如圖3),要求剪成一個直三棱柱,使它的全面積與給出的三角形的面積相等。請設(shè)計一種剪拼方法,用虛線標(biāo)示在圖3中,并作簡要說明。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com