又A′.B′在拋物線C上.所以()2=2p? 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓C的中心在原點,其一個焦點與拋物線y2=4
6
x
的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A、B兩點,連MA、MB.
(1)求橢圓C的方程.
(2)當(dāng)MA、MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

如圖,已知橢圓C的中心在原點,其一個焦點與拋物線的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A、B兩點,連MA、MB.
(1)求橢圓C的方程.
(2)當(dāng)MA、MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
(Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
(Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.
精英家教網(wǎng)

查看答案和解析>>

如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
(Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
(Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.

查看答案和解析>>


同步練習(xí)冊答案