如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
(Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
(Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.
精英家教網(wǎng)

精英家教網(wǎng)
(1)依題意設(shè)所求的拋物線方程為x2=-2py(p>0),----------(1分)
∵直線AB的斜率為k且過點M(0,a)∴直線AB的方程為y=kx+a
y=kx+a
x2=-2py
得x2+2pkx+2pa=0----------①------------------(3分)
設(shè)A(x1,y1),B(x2,y2)(x1<0,x2>0,y1<0,y2<0)
則x1,x2是方程①的兩個實根
∴x1+x2=-2pk,若|x1|-|x2|=2k
則-x1-x2=2k,-2pk=-2k∴p=1---------------------------(5分)
若|x2|-|x1|=2k則x1+x2=-2pk=2k∴p=-1與p>0矛盾----(6分)
∴該拋物線的方程為x2=-2y.-------(7分)
(2)解法1:拋物線x2=-2y的焦點為(0,-
1
2
)即M點坐標(biāo)為(0,-
1
2

直線AB的斜率k=tan60°=
3

∴直線AB的方程為y=
3
x-
1
2
,-----------------(8分)
解方程組
x2=-2y
y=
3
x-
1
2
x1=-
3
-2
y1=-
7+4
3
2
x2=-
3
+2
y2=-
7-4
3
2

即點A(-
3
-2,-
7+4
3
2
)
,B(-
3
+2,-
7-4
3
2
)
-------------------(10分)
|AB|=
42+(4
3
)
2
=8

設(shè)點P(m,n),依題意知-
3
-2≤m≤-
3
+2
,且n=-
1
2
m2

則點P到直線AB的距離d=
|
3
m-n-
1
2
|
2
=
|
1
2
m2+
3
m-
1
2
|
2
=
|-(m+
3
)
2
+4|
4

當(dāng)m=-
3
時,dmax=1,--------------------------------(13分)
這時Smax=
1
2
|AB|dmax
=
1
2
×8×1=4
.-----------------------(15分)
解法2:拋物線x2=-2y的焦點為(0,-
1
2
)即M點坐標(biāo)為(0,-
1
2

直線AB的斜率k=tan60°=
3

∴直線AB的方程為y=
3
x-
1
2

x2=-2y
y=
3
x-
1
2
x2+2
3
x-1=0
x1+x2=-2
3
,x1x2=-1,
|AB|=
1+k2
|x1-x2|=2
(x1+x2)2-4x1x2
=2
12+4
=8
[以下同上]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,線段AB過y軸上一點N(0,m),AB所在直線的斜率為k(k≠0),兩端點A,B到y(tǒng)軸的距離之差為4k.
(1)求出以y軸為對稱軸,過A,O,B三點的拋物線方程;
(2)過拋物線的焦點F作動弦CD,過C,D兩點分別作拋物線的切線,設(shè)其交點為M,求點M的軌跡方程,并求出
FC
FD
FM
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
(Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
(Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省模擬題 題型:解答題

如圖,線段AB過y軸上一點 N(0,m),AB所在直線的斜率為k(k≠0),兩端點A,B到y(tǒng) 軸的距離之差為4k。
(1)求以y軸為對稱軸,過A,O,B三點的拋物線方程;
(2)過拋物線的焦點F作動弦CD,過C,D兩點分別作拋物線的切線,設(shè)其交點為M,求點M的軌跡方程,并求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,線段AB過y軸上一點N(0,m),AB所在直線的斜率為k(k≠0),兩端點A、B到y(tǒng)軸的距離之差為4k.

(Ⅰ)求出以y軸為對稱軸,過A、O、B三點的拋物線方程;

(Ⅱ)過拋物線的焦點F作動弦CD,過C、D兩點分別作拋物線的切線,設(shè)其交點為M,求點M的軌跡方程,并求出的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年廣東省揭陽市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
(Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
(Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案