精英家教網 > 高中數學 > 題目詳情

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

【答案】

(Ⅰ)  (Ⅱ)當m=-3時,直線l方程為y=-x-3,圓P的方程為(x+2)2+(y+1)2=4

 

練習冊系列答案
相關習題

科目:高中數學 來源:山東省濟寧市2012屆高二下學期期末考試理科數學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

點,左焦

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習冊答案