解法二:由橢圓的對稱性不妨設(shè)P(x.y)(x>0.y>0).則由已知可得F1(-.0).F2(.0). 查看更多

 

題目列表(包括答案和解析)

已知正方形ABCD的邊長為2,在正方形及其內(nèi)部任選一點P(在正方形及其內(nèi)部點的選取都是等可能的),作PM⊥AB于M,PN⊥AD于N,矩形PMAN的面積為S.
(1)請建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)P(x,y),寫出x,y滿足的條件,并作出滿足S≤1的P點的區(qū)域;
(2)求S≤1的概率.

查看答案和解析>>

(2009•青浦區(qū)二模)(理)已知P(x,y)是橢圓
x2
16
+
y2
9
=1
上的一個動點,則x+y的最大值是
5
5

查看答案和解析>>

已知離心率為
1
2
的橢圓C1的左、右焦點分別為F1,F(xiàn)2,拋物線C2:y2=4mx(m>0)的焦點為F2,設(shè)橢圓C1與拋物線C2的一個交點為P(x',y'),|PF1|=
7
3
,則橢圓C1的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
x2
4
+
y2
3
=1
;拋物線C2的標(biāo)準(zhǔn)方程為
y2=4x
y2=4x

查看答案和解析>>

(2007•浦東新區(qū)二模)已知直線l:y=-x+b與拋物線y2=4x相交于A、B兩點,|AB|=8.
(1)求直線l的方程;
(2)求拋物線上橫坐標(biāo)為1的點D與點A、B構(gòu)成的△DAB的面積;
(3)設(shè)P(x,y)是拋物線上的動點,試用x或y來討論△PAB面積S的取值范圍.

查看答案和解析>>

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(
2
+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案