解:設點P的坐標為(x.y).依題設得=2.即y=±2x.x≠0 ①因此.點P(x.y).M.N(1.0)三點不共線.得||PM|-|PN||<|MN|=2∵||PM|-|PN||=2|m|>0∴0<|m|<1因此.點P在以M.N為焦點.實軸長為2|m|的雙曲線上.故 查看更多

 

題目列表(包括答案和解析)

(2013•上海)已知真命題:“函數(shù)y=f(x)的圖象關于點P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)-b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3-3x2的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應的函數(shù)解析式,并利用題設中的真命題求函數(shù)g(x)圖象對稱中心的坐標;
(2)求函數(shù)h(x)=log2
2x4-x
 圖象對稱中心的坐標;
(3)已知命題:“函數(shù) y=f(x)的圖象關于某直線成軸對稱圖象”的充要條件為“存在實數(shù)a和b,使得函數(shù)y=f(x+a)-b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設的真命題對它進行修改,使之成為真命題(不必證明).

查看答案和解析>>

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設a,b,c均為正實數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

如圖,在平面直角坐標系xoy中,拋物線y=x2-x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標和拋物線的頂點坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

已知x軸上有一列點P1,P2 P3,…,Pn,…,當n≥2時,點Pn是把線段Pn-1 Pn+1 作n等分的分點中最靠近Pn+1的點,設線段P1P2,P2P3,P3P4,…,PnPn+1的長度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設點P(n,an) {n≥3),在這些點中是否存在兩個點同時在函數(shù)y=
k
(x-1)2
(k>0)
 的圖象上?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>

已知x軸上有一列點P1,P2 P3,…,Pn,…,當n≥2時,點Pn是把線段Pn-1 Pn+1 作n等分的分點中最靠近Pn+1的點,設線段P1P2,P2P3,P3P4,…,PnPn+1的長度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設點P(n,an) {n≥3),在這些點中是否存在兩個點同時在函數(shù)y= 的圖象上?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>


同步練習冊答案