已知x軸上有一列點P1,P2 P3,…,Pn,…,當n≥2時,點Pn是把線段Pn-1 Pn+1 作n等分的分點中最靠近Pn+1的點,設線段P1P2,P2P3,P3P4,…,PnPn+1的長度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設點P(n,an) {n≥3),在這些點中是否存在兩個點同時在函數(shù)y=
k
(x-1)2
(k>0)
 的圖象上?如果存在,求出點的坐標;如果不存在,說明理由.
(1)由已知Pn-1Pn=(n-1)PnPn-1
令n=2,P1P2=P2P3,∴a2=1,同理a3=
1
2
,
an
an-1
=
1
n-1

∴an=
1
n-1
an-1=
1
n-1
1
n-2
•an-2=…=
1
(n-1)!

(2)證明:∵n≥2時,
1
(n-1)!
=
1
1×2×…×n
1
2n-2

∴a1+a2+a3+…+an≤1+1+
1
2
+…
1
2n-2
=3-
1
2n-2
<3
而n=1時,結論成立,故a1+a2+a3+…+an<3;
(3)假設有兩個點A(p,ap),B(q,aq),都在函數(shù)y=
k
(x-1)2
上,
即ap=
k
(p-1)2
,aq=
k
(q-1)2

所以
(p-1)2
(p-1)!
=k,
(q-1)2
(q-1)!
=k,消去k得
(p-1)2
(p-1)!
=
(q-1)2
(q-1)!
 ①,
設bn=
n2
n!
,考查數(shù)列{bn}的增減情況,
∵bn-bn-1=
n2
n!
-
(n-1)2
(n-1)!
=-
n2-3n+1
(n-1)!
,
∴當n>2時,n2-3n+1>0,所以對于數(shù)列{bn}為遞減數(shù)列
∴不可能存在p,q使得①式成立,
∴不存在兩個點同時在函數(shù)y=
k
(x-1)2
(k>0)
 的圖象上.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•湛江二模)已知x軸上有一列點P1,P2 P3,…,Pn,…,當n≥2時,點Pn是把線段Pn-1 Pn+1 作n等分的分點中最靠近Pn+1的點,設線段P1P2,P2P3,P3P4,…,PnPn+1的長度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設點P(n,an) {n≥3),在這些點中是否存在兩個點同時在函數(shù)y=
k(x-1)2
(k>0)
 的圖象上?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:《數(shù)列》2013年廣東省十二大市高三二模數(shù)學試卷匯編(理科)(解析版) 題型:解答題

已知x軸上有一列點P1,P2 P3,…,Pn,…,當n≥2時,點Pn是把線段Pn-1 Pn+1 作n等分的分點中最靠近Pn+1的點,設線段P1P2,P2P3,P3P4,…,PnPn+1的長度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設點P(n,an) {n≥3),在這些點中是否存在兩個點同時在函數(shù)y= 的圖象上?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣東省湛江市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知x軸上有一列點P1,P2 P3,…,Pn,…,當n≥2時,點Pn是把線段Pn-1 Pn+1 作n等分的分點中最靠近Pn+1的點,設線段P1P2,P2P3,P3P4,…,PnPn+1的長度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設點P(n,an) {n≥3),在這些點中是否存在兩個點同時在函數(shù)y= 的圖象上?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案