因?yàn)镾3-2=>c.又Sk-2<Sk+1-2. 查看更多

 

題目列表(包括答案和解析)

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知?jiǎng)訄AP與定圓C:(x+2)2+y2=1相外切,又與定直線L:x=1相切,求動(dòng)圓的圓心P的軌跡方程.

查看答案和解析>>

已知數(shù)列{an}滿足an+1+an-1=2an,n>2,點(diǎn)O是平面上不在L上的任意一點(diǎn),L上有不重合的三點(diǎn)A、B、C,又知a2
OA
+a2009
OC
=
OB
,則S2010=(  )
A、1004B、2010
C、2009D、1005

查看答案和解析>>

已知△ABC中,角A,B,C所對的邊分別為a,b,c,又設(shè)
m
=(sinC,sinBcosA)
,
n
=(b,2c)
,滿足
m
n

(1)求角A的大。
(2)若a=2
3
,c=2
,求三角形ABC的面積S.

查看答案和解析>>

設(shè)f(x)=x3+ax2+bx+c,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根,當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f′(x)=0有且只有一個(gè)相同的實(shí)根.
(2)f(x)=0和f′(x)=0有且只有一個(gè)相同的實(shí)根.
(3)f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根.
(4)f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中錯(cuò)誤命題的個(gè)數(shù)為( 。

查看答案和解析>>


同步練習(xí)冊答案