解法一:由題意得方程組 查看更多

 

題目列表(包括答案和解析)

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

設A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因為,

所以

(2)  不妨設.由題意得.又因為,所以,

于是,

    

所以,當,且時,取得最大值1。

(3)對于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設,

。

得定義知,,

又因為

所以

     

     

所以,

對數(shù)表

1

1

1

-1

-1

 

,

綜上,對于所有的,的最大值為

 

查看答案和解析>>

在△ABC中,內角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.

(Ⅰ)若△ABC的面積等于,求a、b;

(Ⅱ)若,求△ABC的面積.

【解析】第一問中利用余弦定理及已知條件得又因為△ABC的面積等于,所以,得聯(lián)立方程,解方程組得.

第二問中。由于即為即.

時, , ,   所以時,得,由正弦定理得,聯(lián)立方程組,解得,得到

解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分

又因為△ABC的面積等于,所以,得,………1分

聯(lián)立方程,解方程組得.                 ……………2分

(Ⅱ)由題意得,

.             …………2分

時, , ,           ……1分

所以        ………………1分

時,得,由正弦定理得,聯(lián)立方程組

,解得,;   所以

 

查看答案和解析>>

設函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網]

(Ⅰ)求a、b的值; 

(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]

【解析】第一問解:因為f(x)=lnxgx)=ax+

則其導數(shù)為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

解:因為f(x)=lnxgx)=ax+

則其導數(shù)為

由題意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

 

查看答案和解析>>

在復平面內, 是原點,向量對應的復數(shù)是,=2+i。

(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數(shù)

(Ⅱ)復數(shù),對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。

【解析】第一問中利用復數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

 

查看答案和解析>>


同步練習冊答案