(I)求的對稱軸方程, 查看更多

 

題目列表(包括答案和解析)

已知拋物線過點

(I)求拋物線的方程;

(II)已知圓心在軸上的圓過點,且圓在點的切線恰是拋物線在點的切線,求圓的方程;

(Ⅲ)如圖,點軸上一點,點是點關(guān)于原點的對稱點,過點作一條直線與拋物線交于兩點,若,證明: .

 

查看答案和解析>>

已知拋物線過點
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點,且圓在點的切線恰是拋物線在點的切線,求圓的方程;
(Ⅲ)如圖,點軸上一點,點是點關(guān)于原點的對稱點,過點作一條直線與拋物線交于兩點,若,證明: .

查看答案和解析>>

已知拋物線過點
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點,且圓在點的切線恰是拋物線在點的切線,求圓的方程;
(Ⅲ)如圖,點軸上一點,點是點關(guān)于原點的對稱點,過點作一條直線與拋物線交于兩點,若,證明: .

查看答案和解析>>

如圖,過拋物線x2=4y的對稱軸上任一點P(0,m)(m>0)作直線與拋物線交于A(x1,y1),B(x2,y2)兩點.
(I)若
AP
PB
(λ∈R)
,證明:λ=-
x1
x2

(II)在(I)條件下,若點Q是點P關(guān)于原點對稱點,證明:
QP
⊥(
QA
QB
)

(III)設直線AB的方程是x-2y+12=0,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.

查看答案和解析>>

設二次函數(shù)滿足條件:①對稱軸方程是;②函數(shù)的圖象與直線相切。

(I)求的解析式;

(II)不等式的解集是,求的值。

查看答案和解析>>

 

一、選擇題:

       BDDCB  BBAAC  AC

二、填空題:

13.   14.6   15.    16.

<center id="4wrgb"></center>

17.解:(I)取AC的中點G,連接OG,EG,

      

       平面OEG

           5分

  • 20090514

           平面ABC

          

           又

           又F為AB中點,

          

           ,

           平面SOF,

           平面SAB,

           平面SAB      10分

    18.解:

          

          

          

                6分

       (I)由,

        得對稱軸方程     8分

       (II)由已知條件得,

          

          

                12分

    19.解:設點,點共有16個:(0,0),(0,-1),(-1,0),(0,1),(1,0),

       (0,2),(2,0),(-1,-1),(-1,1),(1,-1),(-1,2),(2,-1),(1,1),(1,2),

       (2,1),(2,2)       3分

       (I)傾斜角為銳角,

           ,

           則點P有(-1,1),(1,-1),(-1,2),(2,-1),

               6分

       (II)直線不平行于x軸且不經(jīng)過第一象限

       

           即     10分

           *點P有(-1,-1),(-1,0),

           概率      12分

    20.解:(I),直線AF2的方程為

           設

           則有,

          

               6分

       (II)假設存在點Q,使

          

                 8分

          

           *Q在以MN為直徑的圓(除去M,N點)上,

           圓心O(0,0),半徑為

           又點Q在圓

           *圓O與圓相離,假設不成立

           *上不存在符合題意的點Q。      12分

    21.解:(I)

           是等差數(shù)列

           又

               2分

          

          

                5分

           又

           為首項,以為公比的等比數(shù)列      6分

       (II)

          

           當

           又               

           是單調(diào)遞增數(shù)列      9分

       (III)時,

          

           即

                  12分

    22.解L

           的值域為[0,1]        2分

           設的值域為A,

           ,

           總存在

          

          

       (1)當時,

           上單調(diào)遞減,

          

          

               5分

       (2)當時,

          

           令

           (舍去)

           ①當時,列表如下:

          

    0

    3

     

    -

    0

    +

     

    0

           ,

           則

                9分

           ②當時,時,

           函數(shù)上單調(diào)遞減

          

          

                  11分

           綜上,實數(shù)的取值范圍是      12分


    同步練習冊答案