題目列表(包括答案和解析)
設(shè)函數(shù)
(1)當(dāng)時,求曲線處的切線方程;
(2)當(dāng)時,求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程。………………4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)的取值范圍是
已知冪函數(shù)滿足。
(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)滿足,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數(shù)滿足,
因此,解得,………………3分
因為,所以k=0,或k=1,當(dāng)k=0時,,
當(dāng)k=1時,,綜上所述,k的值為0或1,!6分
(2)函數(shù),………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:,
當(dāng)時,,因為在區(qū)間上的最大值為5,
所以,或…………………………………………10分
解得滿足題意
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com