[解](1)時不合題意, -- 1分 查看更多

 

題目列表(包括答案和解析)

如圖,已知點和單位圓上半部分上的動點B.

(1)若,求向量;

(2)求的最大值.

【解析】對于這樣的向量的坐標和模最值的求解,利用建立直角坐標系的方法可知。

第一問中,依題意,,

因為,所以,即,

解得,所以

第二問中,結(jié)合三角函數(shù)的性質(zhì)得到最值。

(1)依題意,,(不含1個或2個端點也對)

, (寫出1個即可)

因為,所以,即

解得,所以.-

(2),

 時,取得最大值,

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調(diào)遞增;當時,單調(diào)遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

 

查看答案和解析>>

已知冪函數(shù)滿足。

(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)滿足,得到

因為,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到

(1)對于冪函數(shù)滿足,

因此,解得,………………3分

因為,所以k=0,或k=1,當k=0時,,

當k=1時,,綜上所述,k的值為0或1,!6分

(2)函數(shù),………………7分

由此要求,因此拋物線開口向下,對稱軸方程為:

時,,因為在區(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>

已知函數(shù),其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數(shù)的單調(diào)性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當時, ,函數(shù)上單調(diào)遞增;

②當時,由可得,由解得

第三問,當時由(2)可知,上處取得最小值

時由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時,求的取值范圍是

 

查看答案和解析>>

已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。

第一問中,可設(shè)橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

第二問中,

假設(shè)存在這樣的直線,設(shè),MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設(shè)橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

 (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

 

查看答案和解析>>


同步練習冊答案