題目列表(包括答案和解析)
設(shè),橢圓方程為,拋物線方程為。如圖所示,過點(diǎn)
作軸的平行線,與拋物線在第一象限的交點(diǎn)為G。已知拋物線在點(diǎn)
G的切線經(jīng)過橢圓的右焦點(diǎn)F1。
(1)求滿足條件的橢圓方程和拋物線方程; (6分)
(2)設(shè)A、B分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得
△ABP為直角三角形?若存在,請指出共有幾個這樣的點(diǎn)?并說明理由(不必具
體求出這些點(diǎn)的坐標(biāo))。(8分)
設(shè),橢圓方程為,拋物線方程為。如圖所示,過點(diǎn)
作軸的平行線,與拋物線在第一象限的交點(diǎn)為G。已知拋物線在點(diǎn)
G的切線經(jīng)過橢圓的右焦點(diǎn)F1。
(1)求滿足條件的橢圓方程和拋物線方程; (6分)
(2)設(shè)A、B分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得
△ABP為直角三角形?若存在,請指出共有幾個這樣的點(diǎn)?并說明理由(不必具
體求出這些點(diǎn)的坐標(biāo))。(8分)
圖6
(1)求滿足條件的橢圓方程和拋物線方程.
(2)設(shè)A、B分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).
圖6
我們把由半橢圓=1(x≥0)與半橢圓=1(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.
如圖6,點(diǎn)F0、F1、F2是相應(yīng)橢圓的焦點(diǎn),A1、A2和B1、B2分別是“果圓”與x、y軸的交點(diǎn).〔(文)M是線段A1A2的中點(diǎn)〕
(1)(理)若△F0F1F2是邊長為1的等邊三角形,求“果圓”的方程.
(2)(理)當(dāng)|A1A2|>|B1B2|時,求的取值范圍.
(文)設(shè)P是“果圓”的半橢圓=1(x≤0)上任意一點(diǎn),求證:當(dāng)|PM|取得最小值時,P在點(diǎn)B1、B2或A1處.
(3)(理)連結(jié)“果圓”上任意兩點(diǎn)的線段稱為“果圓”的弦.試研究:是否存在實(shí)數(shù)k,使斜率為k的“果圓”平行弦的中點(diǎn)軌跡總是落在某個橢圓上?若存在,求出所有可能的k值;若不存在,請說明理由.
(文)若P是“果圓”上任意一點(diǎn),求|PM|取得最小值時點(diǎn)P的橫坐標(biāo).
(本小題滿分14分)
設(shè),橢圓方程為,拋物線方程為.如圖6所示,過點(diǎn)作軸的平行線,與拋物線在第一象限的交點(diǎn)為,已知拋物線在點(diǎn)的切線經(jīng)過橢圓的右焦點(diǎn).
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn),使得為直角三角形?若存在,請指出共有幾個這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com